General phase transition models for vehicular traffic with point constraints on the flow

被引:7
作者
Dal Santo, E. [1 ]
Rosini, M. D. [1 ]
Dymski, N. [1 ,2 ]
Benyahia, M. [3 ]
机构
[1] Uniwersytet Marii Curie Sklodowskiej, Inst Matemat, Pl Marii Curie Sklodowskiej 1, PL-20031 Lublin, Poland
[2] Univ Cote dAzur, Inria Sophia Antipolis Mediterranee, INRIA, CNRS,LJAD, F-06902 Sophia Antipolis, France
[3] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
关键词
conservation laws; phase transitions; Lighthill-Whitham-Richards model; Aw-Rascle-Zhang model; vehicular traffic; unilateral point constraint; Riemann problem; CONSERVATION-LAWS; APPROXIMATION; BEHAVIOR; WAVES;
D O I
10.1002/mma.4478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a general phase transition model that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the free-flow phase and by a system of 2 conservation laws in the congested phase. The free-flowphase is described by a one-dimensional fundamental diagram corresponding to a Newell-Daganzo type flux. The congestion phase is described by a two-dimensional fundamental diagram obtained by perturbing a general fundamental flux. In particular, we study the resulting Riemann problems in the case a local point constraint on the flow of the solutions is enforced.
引用
收藏
页码:6623 / 6641
页数:19
相关论文
共 33 条
[1]   QUALITATIVE BEHAVIOUR AND NUMERICAL APPROXIMATION OF SOLUTIONS TO CONSERVATION LAWS WITH NON-LOCAL POINT CONSTRAINTS ON THE FLUX AND MODELING OF CROWD DYNAMICS AT THE BOTTLENECKS [J].
Andreianov, Boris ;
Donadello, Carlotta ;
Razafison, Ulrich ;
Rosini, Massimiliano D. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05) :1269-1287
[2]   A second-order model for vehicular traffics with local point constraints on the flow [J].
Andreianov, Boris ;
Donadello, Carlotta ;
Rosini, Massimiliano Daniele .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04) :751-802
[3]   RIEMANN PROBLEMS WITH NON-LOCAL POINT CONSTRAINTS AND CAPACITY DROP [J].
Andreianov, Boris ;
Donadello, Carlotta ;
Razafison, Ulrich ;
Rosini, Massimiliano D. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (02) :259-278
[4]   Crowd dynamics and conservation laws with nonlocal constraints and capacity drop [J].
Andreianov, Boris ;
Donadello, Carlotta ;
Rosini, Massimiliano D. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (13) :2685-2722
[5]   Finite volume schemes for locally constrained conservation laws [J].
Andreianov, Boris ;
Goatin, Paola ;
Seguin, Nicolas .
NUMERISCHE MATHEMATIK, 2010, 115 (04) :609-645
[6]   SOLUTIONS OF THE AW-RASCLE-ZHANG SYSTEM WITH POINT CONSTRAINTS [J].
Andreianov, Boris P. ;
Donadello, Carlotta ;
Razafison, Ulrich ;
Rolland, Julien Y. ;
Rosini, Massimiliano D. .
NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) :29-47
[7]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[8]  
Benyahia M, 2016, ARXIV160508191
[9]   Entropy solutions for a traffic model with phase transitions [J].
Benyahia, Mohamed ;
Rosini, Massimiliano D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 141 :167-190
[10]  
Bibbins J. R., 1935, HIGHWAY RES BOARD P, V14, P448