A fuzzy inference system modeling approach for interval-valued symbolic data forecasting

被引:18
|
作者
Maciel, Leandro [1 ]
Ballini, Rosangela [2 ]
机构
[1] Univ Fed Sao Paulo, Sao Paulo Sch Polit Econ & Business, R Angelica 100, BR-06132380 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Econ, R Pitagoras 353, BR-13083857 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Symbolic data analysis; Interval-valued data; Fuzzy inference systems; Rule-based models; Time series forecasting; LINEAR-REGRESSION MODEL; CLUSTERING METHODS; NEURAL-NETWORK; STATISTICS; SETS;
D O I
10.1016/j.knosys.2018.10.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper suggests a fuzzy inference system (iFIS) modeling approach for interval-valued time series forecasting. Interval-valued data arise quite naturally in many situations in which such data represent uncertainty/variability or when comprehensive ways to summarize large data sets are required. The method comprises a fuzzy rule-based framework with affine consequents which provides a (non)linear framework that processes interval-valued symbolic data. The iFIS antecedents identification uses a fuzzy c-means clustering algorithm for interval-valued data with adaptive distances, whereas parameters of the linear consequents are estimated with a center-range methodology to fit a linear regression model to symbolic interval data. iFIS forecasting power, measured by accuracy metrics and statistical tests, was evaluated through Monte Carlo experiments using both synthetic interval-valued time series with linear and chaotic dynamics, and real financial interval-valued time series. The results indicate a superior performance of iFIS compared to traditional alternative single-valued and interval-valued forecasting models by reducing 19% on average the predicting errors, indicating that the suggested approach can be considered as a promising tool for interval time series forecasting. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [41] Interval-Valued Least Square Prenucleolus of Interval-Valued Cooperative Games with Fuzzy Coalitions
    Ye, Yin-Fang
    Li, Deng-Feng
    GAME THEORY AND APPLICATIONS, 2017, 758 : 303 - 317
  • [42] Interval-valued fuzzy line graphs
    Akram, Muhammad
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 : S145 - S150
  • [43] Interval-Valued Intuitionistic Fuzzy TODIM
    Krohling, Renato A.
    Pacheco, Andre G. C.
    2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014, 2014, 31 : 236 - 244
  • [44] Optimization in an Interval-valued Fuzzy Environment
    Ji, Hongmei
    Li, Nianwei
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 1, 2010, : 100 - 103
  • [45] Intuitionistic fuzzy grey cognitive maps for forecasting interval-valued time series
    Hajek, Petr
    Froelich, Wojciech
    Prochazka, Ondrej
    NEUROCOMPUTING, 2020, 400 (400) : 173 - 185
  • [46] Interval-Valued Complex Fuzzy Logic
    Greenfield, Sarah
    Chiclana, Francisco
    Dick, Scott
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2014 - 2019
  • [47] Interval-Valued Intuitionistic Fuzzy Coimplications
    Visintin, Lidiane
    Sander Reiser, Renata Hax
    Callejas Bedregal, Benjamin Rene
    2012 XXXVIII CONFERENCIA LATINOAMERICANA EN INFORMATICA (CLEI), 2012,
  • [48] Interval-valued contractive fuzzy negations
    Bedregal, Benjamin
    Bustince, Humberto
    Fernandez, Javier
    Deschrijver, Glad
    Mesiar, Radko
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [49] TEMPERED INTERVAL-VALUED FUZZY HYPERGRAPHS
    Akram, Muhammad
    Alshehri, Noura Omair
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (01): : 39 - 48
  • [50] Fuzzy Regression Model With Interval-Valued Fuzzy Input-Output Data
    Rabiei, Mohammad Reza
    Arghami, Naser Reza
    Taheri, S. Mahmoud
    Sadeghpour, Bahram
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,