Phosphate in solutions of model esters and polyphosphates (glucose phosphate, inositol hexaphosphate, pyrophosphate, ribonucleic acid, tripolyphosphate and trimetaphosphate) was quantitatively released in <6 h by acid phosphatase or phytase at pH 5.0. Interference from insoluble, ion association complexes formed between protein in the enzymes and the phosphomolybdenum blue during the colorimetric determination of the molybdate reactive phosphorus released was removed by adding dimethyl sulphoxide. Filtered (0.45 mu m) soil solution from a peaty soil contained 590 mu g dm(-3) total dissolved phosphorus (TDP), of which 13% was molybdate reactive phosphorus (MRP), 26% dissolved organic phosphorus (DOP) and 61% dissolved condensed phosphorus (DCP). When acid phosphatase was added to the soil solution under the conditions used to hydrolyse the model compounds, MRP increased to 54% of the TDP in about 10 h and then remained constant. From a mass balance, at least 25% of the DCP was hydrolysed. Incubation of the soil solution at 35 degrees C without enzyme increased MRP to 44% of the TDP, reflecting native enzyme activity. Soil solution containing a higher concentration of TDP (1.27 mg dm(-3)) was also obtained. The distribution of MRP, DOP and DCP fractions was similar but acid phosphatase hydrolysed a greater proportion of the P and MRP increased to 64% of the TDP and at least 40% of the DCP was hydrolysed. The results of hydrolysis with phytase were similar to those with acid phosphatase. The protection of part of the DOP or DCP fraction from hydrolysis was likely caused by occlusion within colloids or the existence of P compounds unlike those of the model substrates.