Homoclinic solutions for a class of second order discrete Hamiltonian systems

被引:10
作者
Tang, Xian Hua [1 ]
Lin, Xiao Yan [1 ,2 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Peoples R China
基金
中国国家自然科学基金;
关键词
Homoclinic solution; discrete Hamiltonian system; critical point; ADJOINT DIFFERENCE-EQUATIONS; PERIODIC-SOLUTIONS; ORBITS; EXISTENCE;
D O I
10.1007/s10114-012-9233-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the second order discrete Hamiltonian systems Delta(2)u(n - 1) - L(n)u(n) + del W(n, u(n)) = f(n), n is an element of Z, u is an element of R-N and W : Z x R-N --> R and f : Z --> R-N are not necessarily periodic in n. Under some comparatively general assumptions on L, W and f, we establish results on the existence of homoclinic orbits. The obtained results successfully generalize those for the scalar case.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 50 条
[41]   Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems [J].
Coti Zelati, Vittorio ;
Montecchiari, Piero ;
Nolasco, Marta .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (01) :77-99
[42]   Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems [J].
Tang, Xianhua ;
Chen, Jing .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[43]   Subharmonic solutions and homoclinic orbits of second order discrete Hamiltonian systems with potential changing sign [J].
Deng, Xiaoqing ;
Cheng, Gong ;
Shi, Haiping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) :1198-1206
[44]   Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems [J].
V. Coti Zelati ;
P. Montecchiari ;
M. Nolasco .
Nonlinear Differential Equations and Applications NoDEA, 1997, 4 :77-99
[45]   HOMOCLINIC ORBITS FOR A CLASS OF THE SECOND ORDER HAMILTONIAN SYSTEMS [J].
Wan Lili ;
Tang Chunlei .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) :312-318
[46]   Homoclinic solutions for second order Hamiltonian systems with general potentials near the origin [J].
Zhang, Qingye .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (54) :1-13
[47]   Homoclinic solutions for second order discrete p-Laplacian systems [J].
He, Xiaofei ;
Chen, Peng .
ADVANCES IN DIFFERENCE EQUATIONS, 2011, :1-16
[48]   Existence of homoclinic solutions for a class of second-order non-autonomous Hamiltonian systems [J].
Zhang, Qiongfen ;
Tang, X. H. .
MATHEMATICA SLOVACA, 2012, 62 (05) :909-920
[49]   Homoclinic solutions for second order impulsive Hamiltonian systems with small forcing terms [J].
Yan, Lizhao ;
Xu, Fei ;
Lai, Mingyong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5570-5581
[50]   Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems [J].
Zhang, Liang ;
Tang, Xianhua ;
Chen, Yi .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3673-3690