Homoclinic solutions for a class of second order discrete Hamiltonian systems

被引:10
作者
Tang, Xian Hua [1 ]
Lin, Xiao Yan [1 ,2 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Peoples R China
基金
中国国家自然科学基金;
关键词
Homoclinic solution; discrete Hamiltonian system; critical point; ADJOINT DIFFERENCE-EQUATIONS; PERIODIC-SOLUTIONS; ORBITS; EXISTENCE;
D O I
10.1007/s10114-012-9233-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the second order discrete Hamiltonian systems Delta(2)u(n - 1) - L(n)u(n) + del W(n, u(n)) = f(n), n is an element of Z, u is an element of R-N and W : Z x R-N --> R and f : Z --> R-N are not necessarily periodic in n. Under some comparatively general assumptions on L, W and f, we establish results on the existence of homoclinic orbits. The obtained results successfully generalize those for the scalar case.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 50 条
[21]   Homoclinic orbits for second-order discrete Hamiltonian systems with subquadratic potential [J].
Lin, Xiaoyan .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[22]   HOMOCLINIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH GENERAL POTENTIALS [J].
Zhang, Ziheng ;
You, Honglian ;
Yuan, Rong .
MATHEMATICA SLOVACA, 2016, 66 (04) :887-900
[23]   MULTIPLICITY OF HOMOCLINIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS [J].
Bao, Gui ;
Han, Zhiqing ;
Yang, Minghai .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[24]   Infinitely many homoclinic solutions for second order Hamiltonian systems [J].
Zhang, Qingye ;
Liu, Chungen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :894-903
[25]   Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems [J].
Wu, Dong-Lun ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) :154-166
[26]   Homoclinic solutions for a class of non-periodic second order Hamiltonian systems [J].
Ding, Jian ;
Xu, Junxiang ;
Zhang, Fubao .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2010, (31) :1-11
[27]   Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems [J].
Zhang, Ziheng ;
Yuan, Rong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4125-4130
[28]   Existence of homoclinic solutions for a class of second-order Hamiltonian systems [J].
Lv, Xiang ;
Lu, Shiping ;
Yan, Ping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :390-398
[29]   Homoclinic solutions for a class of second-order singular Hamiltonian systems [J].
Boughariou, Morched ;
Mahmoud, Marouen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
[30]   Homoclinic solutions for second-order discrete Hamiltonian systems with asymptotically quadratic potentials [J].
Chen, Huiwen ;
He, Zhimin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (16) :2451-2462