Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales

被引:17
作者
Rehak, Pavel [1 ]
Yamaoka, Naoto [2 ]
机构
[1] Brno Univ Technol, Inst Math, Fac Mech Engn, Brno, Czech Republic
[2] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka, Japan
关键词
Oscillation constant; dynamic equations on time scales; Euler-Cauchy equation; Riccati technique; phase plane analysis; Schauder fixed point theorem; Primary: 34N05; Secondary: 34C10; DIFFERENTIAL-EQUATIONS;
D O I
10.1080/10236198.2017.1371146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the oscillation problem for second-order nonlinear dynamic equations on time scales of the form, where f(x) satisfies if . By means of Riccati technique and phase plane analysis of a system, (non)oscillation criteria are established. A necessary and sufficient condition for all nontrivial solutions of the Euler-Cauchy dynamic equation +./( ts( t)) y = 0 to be oscillatory plays a crucial role in proving our results.
引用
收藏
页码:1884 / 1900
页数:17
相关论文
共 26 条
[1]   Oscillation of solutions of second-order nonlinear differential equations of Euler type [J].
Aghajani, A. ;
Moradifm, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1076-1089
[2]  
[Anonymous], 2006, ADV DIFFERENCE EQU
[3]  
[Anonymous], 2002, Applied Functional Analysis
[4]   Integration on measure chains [J].
Aulbach, B ;
Neidhart, L .
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, :239-252
[5]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[7]   OSCILLATORY PROPERTIES OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS [J].
Dosla, Z. ;
Partsvania, N. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) :445-470
[8]   A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales [J].
Dosly, O ;
Hilger, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :147-158
[9]   Oscillation constants for second-order ordinary differential equations related to elliptic equations with p-Laplacian [J].
Dosly, Ondrej ;
Yamaoka, Naoto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :115-136
[10]  
Elvan Akn-Bohner., 2003, Methods and applications of analysis, V10, P011, DOI DOI 10.4310/MAA.2003.V10.N1.A2