CONFORMALLY BENDING THREE-MANIFOLDS WITH BOUNDARY

被引:1
|
作者
Gursky, Matthew [1 ]
Streets, Jeffrey [2 ]
Warren, Micah [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Almost negative curvature; conformal filling; fully nonlinear equations; MANIFOLDS; CURVATURE;
D O I
10.5802/aif.2613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a three-dimensional manifold with boundary, the Caftan-Hadamard theorem implies that there are obstructions to filling the interior of the manifold with a complete metric of negative curvature. In this paper, we show that any three-dimensional manifold with boundary can be filled conformally with a complete metric satisfying a pinching condition: given any small constant, the ratio of the largest sectional curvature to (the absolute value of) the scalar curvature is less than this constant. This condition roughly means that the curvature is "almost negative", in a scale-invariant sense.
引用
收藏
页码:2421 / 2447
页数:27
相关论文
共 50 条
  • [21] A model for random three-manifolds
    Petri, Bram
    Raimbault, Jean
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (04) : 729 - 768
  • [22] Critical Metrics of the Volume Functional on Compact Three-Manifolds with Smooth Boundary
    R. Batista
    R. Diógenes
    M. Ranieri
    E. Ribeiro
    The Journal of Geometric Analysis, 2017, 27 : 1530 - 1547
  • [23] Critical Metrics of the Volume Functional on Compact Three-Manifolds with Smooth Boundary
    Batista, R.
    Diogenes, R.
    Ranieri, M.
    Ribeiro, E., Jr.
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1530 - 1547
  • [24] Linking Numbers in Three-Manifolds
    Cahn, Patricia
    Kjuchukova, Alexandra
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (02) : 435 - 463
  • [25] THE EXTENDED COMPLEXITY OF THREE-MANIFOLDS
    Shatnykh, O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 194 - 195
  • [26] On three-manifolds with bounded geometry
    Boileau, M
    Cooper, D
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 43 - 53
  • [27] Computer recognition of three-manifolds
    Matveev, SV
    EXPERIMENTAL MATHEMATICS, 1998, 7 (02) : 153 - 161
  • [28] THREE-MANIFOLDS AND KAHLER GROUPS
    Kotschick, D.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (03) : 1081 - 1090
  • [29] STABLE INDECOMPOSABILITY OF THREE-MANIFOLDS
    Hamilton, M. J. D.
    Kotschick, D.
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (02) : 27 - 28
  • [30] Amenable category of three-manifolds
    Carlos Gomez-Larranaga, Jose
    Gonzalez-Acuna, Francisco
    Heil, Wolfgang
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (02): : 905 - 925