High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants

被引:135
|
作者
Sanchez Jimenez, Pedro E. [1 ]
Perejon, Antonio [2 ]
Benitez Guerrero, Monica [1 ]
Valverde, Jose M. [3 ]
Ortiz, Carlos [3 ]
Perez-Maqueda, Luis A. [1 ]
机构
[1] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, C Americo Vespucio 49, Seville 41092, Spain
[2] Univ Seville, Fac Quim, Dept Quim Inorgan, Seville, Spain
[3] Univ Seville, Fac Fis, Ave Reina Mercedes S-N, Seville, Spain
关键词
Energy storage; Calcium-looping; Concentrated solar power; CO2; capture; Calcium acetate; Calcium oxides; POSTCOMBUSTION CO2 CAPTURE; LOOPING TECHNOLOGY; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; MOLTEN-SALTS; CAO; SORBENT; SYSTEMS; INTEGRATION; REGENERATION;
D O I
10.1016/j.apenergy.2018.10.131
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High energy density, cycling stability, low cost and scalability are the main features required for thermochemical energy storage systems to achieve a feasible integration in Concentrating Solar Power plants (CSP). While no system has been found to fully satisfy all these requirements, the reversible CaO/CaCO3 carbonation reaction (CaL) is one of the most promising since CaO natural precursors are affordable and earth-abundant. However, CaO particles progressively deactivate due to sintering-induced morphological changes during repeated carbonation and calcinations cycles. In this work, we have prepared acicular calcium and magnesium acetate precursors using a simple, cost-effective and easily scalable technique that requires just the natural minerals and acetic acid, thereby avoiding expensive reactants and environmentally unfriendly solvents. Upon thermal decomposition, these precursors yield a stable porous structure comprised of well dispersed MgO nanoparticles coating the CaO/CaCO3 grains that is resistant to pore-plugging and sintering while at the same time exhibits high long term effective conversion. Process simulations show that the employment of these materials could significantly improve the overall CSP-CaL efficiency at the industrial level.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条
  • [1] Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants
    Sakellariou, Kyriaki G.
    Karagiannakis, George
    Criado, Yolanda A.
    Konstandopoulos, Athanasios G.
    SOLAR ENERGY, 2015, 122 : 215 - 230
  • [2] Exergy Analysis of Concentrated Solar Power Plants with Thermochemical Energy Storage Based on Calcium Looping
    Chen, Xiaoyi
    Jin, Xiaogang
    Ling, Xiang
    Wang, Yan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (21) : 7928 - 7941
  • [3] Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Perejon, Antonio
    Sanchez-Jimenez, Pedro E.
    Perez-Maqueda, Luis A.
    APPLIED ENERGY, 2018, 210 : 108 - 116
  • [4] Indirect power cycles integration in concentrated solar power plants with thermochemical energy storage based on calcium hydroxide technology
    Carro, A.
    Chacartegui, R.
    Ortiz, C.
    Becerra, J. A.
    JOURNAL OF CLEANER PRODUCTION, 2023, 421
  • [5] Thermochemical energy storage at high temperature for concentrated solar power plants: a critical review
    Bielsa, Daniel
    Faik, Abdessamad
    Arias, Pedro L.
    DYNA, 2023, 98 (06): : 612 - 619
  • [6] Review of technology: Thermochemical energy storage for concentrated solar power plants
    Prieto, Cristina
    Cooper, Patrick
    Ines Fernandez, A.
    Cabeza, Luisa F.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 : 909 - 929
  • [7] Calcium-Looping performance of steel and blast furnace slags for thermochemical energy storage in concentrated solar power plants
    Manuel Valverde, Jose
    Miranda-Pizarro, Juan
    Perejon, Antonio
    Sanchez-Jimenez, Pedro E.
    Perez-Maqueda, Luis A.
    JOURNAL OF CO2 UTILIZATION, 2017, 22 : 143 - 154
  • [8] A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants
    Lu, Yupeng
    Xuan, Yimin
    Teng, Liang
    Liu, Jingrui
    Wang, Busheng
    ENERGY, 2024, 288
  • [9] Sulfur Based Thermochemical Energy Storage for Concentrated Solar Power
    Wong, Bunsen
    Roeb, Martin
    Thomey, Dennis
    Buckingham, Robert
    Brown, Lloyd
    Sattler, Christian
    PROCEEDINGS OF THE ASME 7TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2013, 2014,
  • [10] COBALT OXIDE-BASED STRUCTURED THERMOCHEMICAL REACTORS/HEAT EXCHANGERS FOR SOLAR THERMAL ENERGY STORAGE IN CONCENTRATED SOLAR POWER PLANTS
    Agrafiotis, Christos
    Roeb, Martin
    Sather, Christian
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1, 2014,