Fabrication and high-performance microwave absorption of Ni@SnO2@PPy Core-Shell composite

被引:38
|
作者
Wang, Yan [1 ]
Zhang, Wenzhi [1 ]
Luo, Chunyan [1 ]
Wu, Xinming [1 ]
Yan, Gang [1 ]
Chen, Weixing [1 ]
机构
[1] Xian Technol Univ, Sch Mat & Chem Engn, Xian 710021, Peoples R China
关键词
Core-shell structure; Polymer; Magnetic material; Microwave absorption; INTERFERENCE SHIELDING EFFECTIVENESS; ELECTROMAGNETIC PROPERTIES; ABSORBING PROPERTIES; CARBON NANOTUBES; QUATERNARY NANOCOMPOSITES; POLYANILINE; GRAPHENE; MICROSPHERES; NANOPARTICLES; FERRITE;
D O I
10.1016/j.synthmet.2016.07.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A ternary composite of Ni@SnO2@PPy was synthesized via a three-step method, a facile hydrothermal route (Ni) in first step and (Ni@SnO2) in second step and followed by the in situ polymerization of PPy on the surface of Ni@SnO2. The obtained ternary composite was characterized by various instruments and the TEM analysis indicated that Ni particles were homogenously enwrapped by SnO2 and PPy. The Ni particles with a size of about 200-500 nm are core, SnO2 and PPy form shell. The electromagnetic properties of the core-shell structured Ni@SnO2@PPy (-30.1 dB) are much better than Ni (-10.75 dB) and Ni@SnO2 (-13.8 dB), which is mainly attributed to the improved impedance matching and enhanced interfacial effects. The maximum reflection loss of Ni@SnO2@PPy can reach -30.1 dB at 5.6 GHz and the absorption bandwidth with the reflection loss below -10 dB is 7.4 GHz (from 3.7 to 6.8 GHz, from 13.7 to 18 GHz) with the thickness of 3.5 mm. Our results indicate that the Ni@SnO2@PPy composite is a promising microwave absorbent with thin thickness, strong absorption, and broad bandwidth. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 50 条
  • [11] Enhanced Microwave Absorption Properties of FeCo@TiO2 Core-Shell Nanoparticles
    Gharaati, Abdolrasoul
    Ebrahimzadeh, Majid
    CURRENT NANOSCIENCE, 2019, 15 (02) : 163 - 168
  • [12] Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
    Hou, Ding
    Tao, Haisheng
    Zhu, Xuezhen
    Li, Maoguo
    APPLIED SURFACE SCIENCE, 2017, 419 : 580 - 585
  • [13] Core-shell Fe3O4@SiO2@PANI composite: Preparation, characterization, and applications in microwave absorption
    Ding, Juan
    Cheng, Ligang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 881
  • [14] High-performance microwave absorption by optimizing hydrothermal synthesis of BaFe12O19@MnO2 core-shell composites
    Yustanti, Erlina
    Noviyanto, Alfian
    Ikramullah, Muhammad
    Marsillam, Yogie Anes
    Taryana, Yana
    Taufiq, Ahmad
    RSC ADVANCES, 2023, 13 (39) : 27634 - 27647
  • [15] Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption
    Ding, Ling
    Huang, Ying
    Liu, Xudong
    Xu, Zhipeng
    Li, Suping
    Yan, Jing
    Liu, Panbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812
  • [16] Enhanced microwave absorption properties of novel hierarchical core-shell δ/α MnO2 composites
    Su, Tingting
    Zhao, Biao
    Fan, Bingbing
    Li, Hongxia
    Zhang, Rui
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 273 : 192 - 198
  • [17] Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption
    Tian, Chunhua
    Du, Yunchen
    Xu, Ping
    Qiang, Rong
    Wang, Ying
    Ding, Ding
    Xue, Jianlei
    Ma, Jun
    Zhao, Hongtao
    Han, Xijiang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) : 20090 - 20099
  • [18] Core-Shell Chain-Like Cu@Ni Composite with Dual Absorption Peaks to Improve Microwave Absorption Properties
    Zhou, Yuanyuan
    Deng, Jianying
    Li, Shimei
    Li, Zefeng
    NANO, 2018, 13 (05)
  • [19] Microwave absorption properties and mechanism analyses of core-shell structured high-entropy oxides coated with PPy
    Zhang, Fei
    Wu, Lijun
    Sun, Kai
    Lei, Yanhua
    Yang, Pengtao
    Liu, Hui
    Qi, Xiaosi
    Fan, Runhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [20] Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells
    Zhao, Biao
    Shao, Gang
    Fan, Bingbing
    Zhao, Wanyu
    Xie, Yajun
    Zhang, Rui
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) : 8802 - 8810