A wavelet-laplace variational technique for image deconvolution and inpainting

被引:111
作者
Dobrosotskaya, Julia A. [1 ]
Bertozzi, Andrea L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
barcode; binary image; inpainting; wavelet diffusion;
D O I
10.1109/TIP.2008.919367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We construct a new variational method for blind deconvolution of images and inpainting, motivated by recent PDE-based techniques involving the Ginzburg-Landau functional, but using more localized wavelet-based methods. We present results for both binary and grayscale images. Comparable speeds are achieved with better sharpness of edges in the reconstruction.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 1999, WAVELET TOUR SIGNAL
[2]   Simultaneous structure and texture image inpainting [J].
Bertalmio, M ;
Vese, L ;
Sapiro, G ;
Osher, S .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (08) :882-889
[3]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[4]  
Bertalmio M., 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, V1, pI, DOI DOI 10.1109/CVPR.2001.990497
[5]   Inpainting of binary images using the Cahn-Hilliard equation [J].
Bertozzi, Andrea L. ;
Esedoglu, Selim ;
Gillette, Alan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :285-291
[6]   MOTION BY MEAN-CURVATURE AS THE SINGULAR LIMIT OF GINZBURG-LANDAU DYNAMICS [J].
BRONSARD, L ;
KOHN, RV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :211-237
[7]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[8]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335
[9]  
Chan T. F., 2005, SIAM
[10]   Mathematical models for local nontexture inpaintings [J].
Chan, TF ;
Shen, JH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :1019-1043