Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif implications for mixed peridotite-pyroxenite mantle sources

被引:157
作者
Pearson, DG [1 ]
Nowell, GM [1 ]
机构
[1] Univ Durham, Dept Geol Sci, Durham DH1 3LE, England
关键词
osmium isotopes; hafnium; pyroxenites;
D O I
10.1093/petrology/egg102
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A suite of pyroxenites from the Benz Bousera peridotite massif, northern Morocco, have been analysed for Re-Os and Lu-Hf isotopic compositions. Measured sections of the massif indicate that pyroxenite layers make up between 1 and 9% by volume of the total outcrop. Clinopyroxenes from two Cr-diopside pyroxenites have unradiogenic Hf isotope compositions (epsilon(Hfi) similar to - 7(.)7 to - 8(.)5) whereas those of the Al-augite suite are more radiogenic (epsilon(Hfi) 9.4 to 25(.)6). In general, the Nd-Hf isotope compositions of the pyroxenites lie close to the mantle array. One garnet pyroxenite lies significantly below the mantle Hf-Nd isotope array such that it requires an ancient history characterized by high Lu/Hf and Sm/Nd but low Lu/Hf relative to Sm/Nd. As with the Sm-Nd and Rb-Sr systems, parent-daughter and isotopic ratios for the Lu-Hf system have been recently decoupled by a partial melting event associated with transfer of the massif from mantle to crust. This created highly fractionated Sm/Nd and Lu/Hf ratios in many rocks and the pyroxenites can be referred to as 'residual'. The near-solidus extraction of a siliceous melt from the pyroxenites is also a possible explanation for the orthopyroxene-rich margins to numerous pyroxenite layers, via reaction with peridotite. Pyroxenite Os isotope compositions are much more radiogenic than their host peridotites. In contrast to the non-systematic Nd and Hf model ages, a large portion of the pyroxenite Re-Os model ages cluster between 1 - 2 and 1(.)4 Ga, within error of the model ages defined by many Ronda pyroxenites and close to the precise 1.43 +/- 0.07 Ga Lu-Hf isochron defined by clinopyroxenes from the peridotites. The Re-Os system thus seems to have been more robust to late-stage melting events that decoupled Sm/Nd and Lu/Hf isotope systematics in the pyroxenites. In contrast to pyroxenites measured from Ronda, some Beni Bousera pyroxenites have relatively radiogenic Os isotope compositions at high Os concentrations (0(.)18 to > 2 ppb), comparable with values reported for some cratonic pyroxene-rich xenoliths. In contrast to cratonic eclogues, most pyroxenites analysed here and those reported in the literature lie close to the mantle Nd-Hf isotope array. The Nd-Sr-Pb-Hf isotopic compositions and stable isotope characteristics of these pyroxenites reflect signatures from recycled oceanic crust and sediment. Hence, mixing of such material, if present within the convecting mantle, with peridotite, could account for some of the heterogeneity seen in oceanic basalts. Small amounts of pyroxenite incorporated into peridotite can also produce the radiogenic Os isotope signatures evident in the source of oceanic basalts. However, these observations alone do not require pyroxenite to be an integral part of the convecting upper-mantle magma source region. The spectrum of Nd, Hf and Os isotope compositions also makes then a suitable component to explain some of the isotopic characteristics of the source regions of ultrapotassic magmas.
引用
收藏
页码:439 / 455
页数:17
相关论文
共 66 条
[1]   IMPLICATIONS OF A 2-COMPONENT MARBLE-CAKE MANTLE [J].
ALLEGRE, CJ ;
TURCOTTE, DL .
NATURE, 1986, 323 (6084) :123-127
[2]   HF ISOTOPE COMPOSITION OF LATE CENOZOIC BASALTIC ROCKS FROM NORTHWESTERN COLORADO, USA - NEW CONSTRAINTS ON MANTLE ENRICHMENT PROCESSES [J].
BEARD, BL ;
JOHNSON, CM .
EARTH AND PLANETARY SCIENCE LETTERS, 1993, 119 (04) :495-509
[3]   Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin [J].
Becker, H ;
Shirey, SB ;
Carlson, RW .
EARTH AND PLANETARY SCIENCE LETTERS, 2001, 188 (1-2) :107-121
[4]   Re-Os fractionation in eclogites and blueschists and the implications for recycling of oceanic crust into the mantle [J].
Becker, H .
EARTH AND PLANETARY SCIENCE LETTERS, 2000, 177 (3-4) :287-300
[5]   On the Lu-Hf isotope geochemistry of silicate rocks [J].
Blichert-Toft, J .
GEOSTANDARDS NEWSLETTER-THE JOURNAL OF GEOSTANDARDS AND GEOANALYSIS, 2001, 25 (01) :41-56
[6]   Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts [J].
Blichert-Toft, J ;
Frey, FA ;
Albarède, F .
SCIENCE, 1999, 285 (5429) :879-882
[7]   Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco:: Implications for basalt origin [J].
Blichert-Toft, J ;
Albarède, F ;
Kornprobst, J .
SCIENCE, 1999, 283 (5406) :1303-1306
[8]   Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS [J].
BlichertToft, J ;
Chauvel, C ;
Albarede, F .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1997, 127 (03) :248-260
[9]   Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: The spinel paradox [J].
Bodinier, JL ;
Merlet, C ;
Bedini, RM ;
Simien, F ;
Remaidi, M ;
Garrido, CJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (03) :545-550
[10]   Chemical and Os isotopic study of cretaceous potassic rocks from southern Brazil [J].
Carlson, RW ;
Esperanca, S ;
Svisero, DP .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1996, 125 (04) :393-405