On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem

被引:34
作者
Alías, LJ [1 ]
Palmer, B
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
D O I
10.1017/S0024609301008220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new approach to the Calabi-Bernstein theorem on maximal surfaces in the Lorentz-Minkowski space L-3 is introduced. The approach is based on an upper bound for the total curvature of geodesic discs in a maximal surface in L-3, involving the local geometry of the surface and its hyperbolic image. As an application of this, a new proof of the Calabi-Bernstein theorem is provided.
引用
收藏
页码:454 / 458
页数:5
相关论文
共 13 条
[1]   Zero mean curvature surfaces with non-negative curvature in flat Lorentzian 4-spaces [J].
Alias, LJ ;
Palmer, B .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1982) :631-636
[2]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[3]  
Calabi E., 1970, Proc Symp Pure Appl Math, V15, P223, DOI [10.1090/pspum/015/0264210, DOI 10.1090/PSPUM/015/0264210]
[4]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[6]   GENERALIZED MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE L3 [J].
ESTUDILLO, FJM ;
ROMERO, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :515-524
[7]   ON THE GAUSS CURVATURE OF MAXIMAL SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE [J].
ESTUDILLO, FJM ;
ROMERO, A .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (01) :1-4
[8]  
ESTUDILLO FJM, 1991, GEOMETRIAE DEDICATA, V38, P167
[9]   EXISTENCE OF SOLUTIONS WITH SINGULARITIES FOR THE MAXIMAL SURFACE EQUATION IN MINKOWSKI SPACE [J].
KLYACHIN, AA ;
MIKLYUKOV, VM .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 80 (01) :87-104
[10]   MAXIMAL SURFACES WITH CONELIKE SINGULARITIES [J].
KOBAYASHI, O .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1984, 36 (04) :609-617