Stability and Electrochemical Performance Analysis of an Electrolyte with Na+ Impurity for a Vanadium Redox Flow Battery in Energy Storage Applications

被引:14
作者
Ding, Muqing [1 ,2 ]
Liu, Tao [1 ,2 ]
Zhang, Yimin [1 ,2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Resource & Environm Engn, Hubei Collaborat Innovat Ctr High Efficient Utili, State Environm Protect Key Lab Mineral Met Resour, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Prov Engn Technol Res Ctr High Efficient Cl, Wuhan 430081, Peoples R China
[3] Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
BROAD TEMPERATURE ADAPTABILITY; POSITIVE ELECTROLYTE; MIXED ACID; BEHAVIOR; PROGRESS; ANOLYTE;
D O I
10.1021/acs.energyfuels.0c00063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effects of Na+ on the stability and electrochemical property of electrolytes are investigated for use in future applications. The V(V), V3.5+, and V(III) electrolytes are instable when the Na+ concentration is over 0.0048 mol L(-1 )in electrolyte. The increase in Na impurity will lead to an increase in viscosity and a decrease in conductivity, which definitely hinder the diffusion of VO2+/VO2+ and further reduce the electrochemical property of electrolytes. In addition, the temperature adaptability tests of batteries show that when the Na+ concentration is below 0.0048 mol L-1, the vanadium redox flow battery can work successfully in the temperature range -10 to 40 degrees C. Moreover, it is confirmed that Na/V precipitations physically adhere to the electrode surface, resulting in battery performance degradation.
引用
收藏
页码:6430 / 6438
页数:9
相关论文
共 31 条
  • [1] A review of electrolyte additives and impurities in vanadium redox flow batteries
    Cao, Liuyue
    Skyllas-Kazacos, Maria
    Menictas, Chris
    Noack, Jens
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (05) : 1269 - 1291
  • [2] Redox Flow Battery for Energy Storage
    Chakrabarti, Mohammed Harun
    Hajimolana, S. A.
    Mjalli, Farouq S.
    Saleem, M.
    Mustafa, I.
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (04) : 723 - 739
  • [3] A review of vanadium electrolytes for vanadium redox flow batteries
    Choi, Chanyong
    Kim, Soohyun
    Kim, Riyul
    Choi, Yunsuk
    Kim, Soowhan
    Jung, Ho-Young
    Yang, Jung Hoon
    Kim, Hee-Tak
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 : 263 - 274
  • [4] Sustainability of vanadium redox-flow batteries: Benchmarking electrolyte synthesis procedures
    Dassisti, M.
    Cozzolino, G.
    Chimienti, M.
    Rizzuti, A.
    Mastrorilli, P.
    L'Abbate, P.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (37) : 16477 - 16488
  • [5] Ding MQ., 2018, Non-ferr Metals, V7, P45
  • [6] Investigations of the influences of K+impurity on the electrolyte for vanadium redox flow battery
    Ding, Muqing
    Liu, Tao
    Zhang, Yimin
    [J]. IONICS, 2020, 26 (07) : 3415 - 3423
  • [7] Effect of Fe(III) on the positive electrolyte for vanadium redox flow battery
    Ding, Muqing
    Liu, Tao
    Zhang, Yimin
    Cai, Zhenlei
    Yang, Yadong
    Yuan, Yizhong
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (01):
  • [8] Study of the electrochemical performance of VO2+/VO2 + redox couple in sulfamic acid for vanadium redox flow battery
    He, Zhangxing
    He, Yaoyi
    Chen, Chen
    Yang, Shuai
    Liu, Jianlei
    He, Zhen
    Liu, Suqin
    [J]. IONICS, 2014, 20 (07) : 949 - 955
  • [9] High-power positive electrode based on synergistic effect of N- and WO3 -decorated carbon felt for vanadium redox flow batteries
    Hosseini, Mir Ghasem
    Mousavihashemi, Seyedabolfazl
    Murcia-Lopez, Sebastian
    Flox, Cristina
    Andreu, Teresa
    Ramon Morante, Joan
    [J]. CARBON, 2018, 136 : 444 - 453
  • [10] Eco-Friendly Leaching and Separation of Vanadium over Iron Impurity from Vanadium-Bearing Shale Using Oxalic Acid as a Leachant
    Hu, Pengcheng
    Zhang, Yimin
    Huang, Jing
    Liu, Tao
    Yuan, Yizhong
    Xue, Nannan
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (02): : 1900 - 1908