Analysis of Chloroquine Resistance Transporter (CRT) Isoforms and Orthologues in S. cerevisiae Yeast

被引:24
|
作者
Baro, Nicholas K.
Pooput, Chaya
Roepe, Paul D. [1 ]
机构
[1] Georgetown Univ, Dept Chem, Dept Biochem & Mol Biol, Washington, DC 20057 USA
关键词
PLASMODIUM-FALCIPARUM CHLOROQUINE; TRANSMEMBRANE PROTEIN PFCRT; DIGESTIVE VACUOLE; IN-VITRO; PH; MUTATIONS; QUININE; SUSCEPTIBILITY; MECHANISM; RESPONSES;
D O I
10.1021/bi200922g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous work from our laboratory optimized MeOH-inducible expression of the P. falciparum malarial parasite transporter PfCRT in P. pastoris yeast. These strains are useful for many experiments but do not allow for inducible protein expression under ambient growth conditions. We have therefore optimized galactose-inducible expression of PfCRT in S. cerevisiae yeast. We find that expression of PfCRT confers CQ hypersensitivity to growing yeast and that this is due to plasma membrane localization of the transporter. We use quantitative analyses of growth rates to compare hypersensitivity for yeast expressing various PfCRT isoforms. We also report successful high level inducible expression of the P. vivax orthologue, PvCRT, and compare CQ hypersensitivity for PvCRT vs PfCRT expressing yeast. We test the hypothesis that hypersensitivity is due to increased transport of CQ into yeast expressing the transporters via direct H-3-CQ transport experiments and analyze the effect that membrane potential has on transport. The data suggest important new tools for rapid functional screening of PfCRT and PvCRT isoforms and provide further evidence for a model wherein membrane potential promotes charged CQ transport by PfCRT. Data also support our previous conclusion that wild type PfCRT is capable of CQ transport and provide a basis for understanding the lack of correspondence between PvCRT mutations and resistance to CQ in the important malarial parasite P. vivax.
引用
收藏
页码:6701 / 6710
页数:10
相关论文
共 50 条
  • [1] ANALYSIS OF PIPERAQUINE TRANSPORT BY PLASMODIUM FALCIPARUM CHLOROQUINE RESISTANCE TRANSPORTER ISOFORMS HETEROLOGOUSLY EXPRESSED IN S. CEREVISIAE YEAST
    Riegel, Bryce E.
    Roepe, Paul D.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 274 - 274
  • [2] Chloroquine resistance in Plasmodium chabaudi:: are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved?
    Hunt, P
    Cravo, PVL
    Donleavy, P
    Carlton, JMR
    Walliker, D
    MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2004, 133 (01) : 27 - 35
  • [3] Analysis of Plasmodium vivax Chloroquine Resistance Transporter Mutant Isoforms
    Hassett, Matthew R.
    Riegel, Bryce E.
    Callaghan, Paul S.
    Roepe, Paul D.
    BIOCHEMISTRY, 2017, 56 (41) : 5615 - 5622
  • [4] Structures of Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) Isoforms and Their Interactions with Chloroquine
    Willems, Andreas
    Kalaw, Adrian
    Ecer, Ayse
    Kotwal, Amitesh
    Roepe, Luke D.
    Roepe, Paul D.
    BIOCHEMISTRY, 2023, 62 (05) : 1093 - 1110
  • [5] Function of Resistance Conferring Plasmodium falciparum Chloroquine Resistance Transporter Isoforms
    Baro, Nicholas K.
    Callaghan, Paul S.
    Roepe, Paul D.
    BIOCHEMISTRY, 2013, 52 (24) : 4242 - 4249
  • [6] Variation of the Chloroquine Resistance Transporter (Crt) Gene in Chloroquine-Resistant and Chloroquine-Sensitive Plasmodium berghei
    Ghobakhloo, N.
    Nateghpour, M.
    Rezaee, S.
    Hajjaran, H.
    Mohebali, M.
    Abedkhojasteh, H.
    IRANIAN JOURNAL OF PARASITOLOGY, 2008, 3 (04) : 39 - 44
  • [7] Differential affinity purification and mass spectrometry analysis of two nuclear pore complex isoforms in yeast S. cerevisiae
    Bensidoun, Pierre
    Zenklusen, Daniel
    Oeffinger, Marlene
    STAR PROTOCOLS, 2023, 4 (03):
  • [8] Mechanisms of action and regulation of Ctr1 copper transporter in yeast S. cerevisiae
    Lee, Jaekwon
    Sinani, Devis
    Adle, David J.
    Kim, Heejeong
    BIOPHYSICAL JOURNAL, 2007, : 357A - 357A
  • [9] Analysis of irradiation resistance mechanism in S. cerevisiae.
    Kamata, K.
    Maeda, H.
    Tanaka, M.
    Hatashita, M.
    Uchida, H.
    Oki, M.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [10] Chloroquine Transport via the Malaria Parasite's Chloroquine Resistance Transporter
    Martin, Rowena E.
    Marchetti, Rosa V.
    Cowan, Anna I.
    Howitt, Susan M.
    Broeer, Stefan
    Kirk, Kiaran
    SCIENCE, 2009, 325 (5948) : 1680 - 1682