Integrability, mean convergence, and Parseval's formula for double trigonometric series

被引:2
作者
Chen, CP [1 ]
Lin, CC
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
[2] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 1998年 / 2卷 / 02期
关键词
conditions of bounded variation; double trigonometric series; Parseval's formula; rectangular partial sums; regular convergence; uniform convergence; weighted L-tau-convergence; weighted L-tau-integrability;
D O I
10.11650/twjm/1500406932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the double trigonometric series whose coefficients satisfy conditions of bounded variation of order (p, 0), (0, p), and (p, p) with the weight ((j) over bar (k) over bar)(p-1) for some p > 1. The following properties concerning the rectangular partial sums of this series are obtained: (a) regular convergence; (b) uniform convergence; (c) weighted L-r-integrability and weighted LT-convergence; and (d) Parseval's formula. Our results generalize Bary [1, p. 656], Boas [2, 3], Chen [6, 7], Kolmogorov [9], Marzug [10], Moricz [11, 12, 13, 14], Ul'janov [15], Young [16], and Zygmund [17, p. 4].
引用
收藏
页码:191 / 212
页数:22
相关论文
共 17 条