RG flows of Quantum Einstein Gravity in the linear-geometric approximation

被引:57
作者
Demmel, Maximilian [1 ,2 ]
Saueressig, Frank [3 ]
Zanusso, Omar [4 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[4] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
Quantum gravity; Asymptotic safety; Functional renormalization group; ASYMPTOTIC SAFETY; BACKGROUND INDEPENDENCE; ULTRAVIOLET PROPERTIES; RENORMALIZATION-GROUP; EVOLUTION EQUATION;
D O I
10.1016/j.aop.2015.04.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein-Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial f (R)-approximation establishes that this fixed point comes with similar properties as the one found in metric Quantum Einstein Gravity; in particular it possesses three UV-relevant directions and is stable with respect to deformations of the regulator functions by endomorphisms. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 165
页数:25
相关论文
共 99 条
[81]   A functional renormalization group equation for foliated spacetimes [J].
Rechenberger, Stefan ;
Saueressig, Frank .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03)
[82]   R2 phase diagram of quantum Einstein gravity and its spectral dimension [J].
Rechenberger, Stefan ;
Saueressig, Frank .
PHYSICAL REVIEW D, 2012, 86 (02)
[83]   Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance [J].
Reuter, M. ;
Weyer, H. .
PHYSICAL REVIEW D, 2009, 80 (02)
[84]   Background independence and asymptotic safety in conformally reduced gravity [J].
Reuter, M. ;
Weyer, H. .
PHYSICAL REVIEW D, 2009, 79 (10)
[85]   Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation [J].
Reuter, M ;
Saueressig, F .
PHYSICAL REVIEW D, 2002, 65 (06)
[86]   Nonperturbative evolution equation for quantum gravity [J].
Reuter, M .
PHYSICAL REVIEW D, 1998, 57 (02) :971-985
[87]  
Reuter M., 2010, GEOMETRIC TOPOLOGICA, P288, DOI [10.1017/CBO9780511712135.008, DOI 10.1017/CBO9780511712135.008]
[88]   Quantum Einstein gravity [J].
Reuter, Martin ;
Saueressig, Frank .
NEW JOURNAL OF PHYSICS, 2012, 14
[89]   Fractal space-times under the microscope: a renormalization group view on Monte Carlo data [J].
Reuter, Martin ;
Saueressig, Frank .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)
[90]   The role of background independence for asymptotic safety in Quantum Einstein Gravity [J].
Reuter, Martin ;
Weyer, Holger .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (04) :983-1011