RG flows of Quantum Einstein Gravity in the linear-geometric approximation

被引:58
作者
Demmel, Maximilian [1 ,2 ]
Saueressig, Frank [3 ]
Zanusso, Omar [4 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[4] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
Quantum gravity; Asymptotic safety; Functional renormalization group; ASYMPTOTIC SAFETY; BACKGROUND INDEPENDENCE; ULTRAVIOLET PROPERTIES; RENORMALIZATION-GROUP; EVOLUTION EQUATION;
D O I
10.1016/j.aop.2015.04.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein-Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial f (R)-approximation establishes that this fixed point comes with similar properties as the one found in metric Quantum Einstein Gravity; in particular it possesses three UV-relevant directions and is stable with respect to deformations of the regulator functions by endomorphisms. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 165
页数:25
相关论文
共 99 条
  • [1] Nonperturbative Lorentzian path integral for gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (05) : 924 - 927
  • [2] Reconstructing the Universe
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW D, 2005, 72 (06)
  • [3] Emergence of a 4D world from causal quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (13) : 131301 - 1
  • [4] Nonperturbative quantum gravity
    Ambjorn, J.
    Goerlich, A.
    Jurkiewicz, J.
    Loll, R.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5): : 127 - 210
  • [5] Second-and first-order phase transitions in causal dynamical triangulations
    Ambjorn, Jan
    Jordan, S.
    Jurkiewicz, J.
    Loll, R.
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [6] [Anonymous], ARXIV12034207
  • [7] [Anonymous], 2009, P SCI CD
  • [8] [Anonymous], 1979, GEN RELATIVITY EINST
  • [9] Avramidi I. G., 2000, Lect. Notes Phys. Monogr., V64, P1, DOI [DOI 10.1007/3-540-46523-5, 10.1007/3-540-46523-5]
  • [10] En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions
    Becker, D.
    Reuter, M.
    [J]. ANNALS OF PHYSICS, 2014, 350 : 225 - 301