RG flows of Quantum Einstein Gravity in the linear-geometric approximation

被引:57
作者
Demmel, Maximilian [1 ,2 ]
Saueressig, Frank [3 ]
Zanusso, Omar [4 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[4] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
关键词
Quantum gravity; Asymptotic safety; Functional renormalization group; ASYMPTOTIC SAFETY; BACKGROUND INDEPENDENCE; ULTRAVIOLET PROPERTIES; RENORMALIZATION-GROUP; EVOLUTION EQUATION;
D O I
10.1016/j.aop.2015.04.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein-Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial f (R)-approximation establishes that this fixed point comes with similar properties as the one found in metric Quantum Einstein Gravity; in particular it possesses three UV-relevant directions and is stable with respect to deformations of the regulator functions by endomorphisms. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 165
页数:25
相关论文
共 99 条
[1]   Nonperturbative Lorentzian path integral for gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :924-927
[2]   Reconstructing the Universe [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW D, 2005, 72 (06)
[3]   Emergence of a 4D world from causal quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :131301-1
[4]   Nonperturbative quantum gravity [J].
Ambjorn, J. ;
Goerlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5) :127-210
[5]   Second-and first-order phase transitions in causal dynamical triangulations [J].
Ambjorn, Jan ;
Jordan, S. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICAL REVIEW D, 2012, 85 (12)
[6]  
[Anonymous], ARXIV12034207
[7]  
[Anonymous], 2009, P SCI CD
[8]  
[Anonymous], 1979, GEN RELATIVITY EINST
[9]  
Avramidi I. G., 2000, Lect. Notes Phys. Monogr., V64, P1, DOI [DOI 10.1007/3-540-46523-5, 10.1007/3-540-46523-5]
[10]   En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions [J].
Becker, D. ;
Reuter, M. .
ANNALS OF PHYSICS, 2014, 350 :225-301