The complexity of recognizing linear systems with certain integrality properties

被引:27
作者
Ding, Guoli [1 ]
Feng, Li [2 ]
Zang, Wenan [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
linear system; polyhedron; total dual integrality; NP-hardness;
D O I
10.1007/s10107-007-0103-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let A be a 0 - 1 matrix with precisely two 1's in each column and let 1 be the all-one vector. We show that the problems of deciding whether the linear system Ax >= 1, x >= 0 (1) defines an integral polyhedron, (2) is totally dual integral (TDI), and (3) box-totally dual integral (box-TDI) are all co-NP-complete, thereby confirming the conjecture on NP-hardness of recognizing TDI systems made by Edmonds and Giles in 1984.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 15 条
[1]  
Berge C, 1976, Graphs and Hypergraphs
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]   Recognizing Berge graphs [J].
Chudnovsky, M ;
Cornuéjols, G ;
Liu, XM ;
Seymour, P ;
Vuskovic, K .
COMBINATORICA, 2005, 25 (02) :143-186
[4]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229
[5]   CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :138-154
[6]  
COOK W, 1984, MATH PROGRAM STUD, V22, P64, DOI 10.1007/BFb0121008
[7]  
Cornuejols G., 2001, Combinatorial Optimization: Packing and Covering
[8]  
Edmonds J, 1984, Progress in Combinatorial Optimization, P117, DOI DOI 10.1016/B978-0-12-566780-7.50013-1
[9]  
Edmonds J, 1977, Annals of Discrete Mathematics, V1, P185
[10]  
Fulkerson DR, 1971, MATH PROGRAM, V1, P168