AN ADAPTIVE DIRECT DATA DRIVEN CONTROL SCHEME FOR UNKNOWN PLANT

被引:0
作者
Wang, Jianhong [1 ]
Ramirez-Mendoza, Ricardo A. [1 ]
Lozoya Santos, Jorge De J. [1 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Ave Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2020年 / 16卷 / 03期
基金
美国国家科学基金会;
关键词
Direct data driven control; Adaptive mechanism; Lyapunov stability; Parameter adjustment law; DESIGN; SYSTEMS;
D O I
10.24507/ijicic.16.03.783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper develops an adaptive direct data driven control scheme for unknown plant in one closed loop system, whose goal is to achieve plant-model perfect matching condition. To apply direct data driven control to designing forward controller without the model of plant, virtual input is constructed to derive one optimization problem, whose decision variables are the unknown controller parameters. Through using the idea of adaptation, one parameter adjustment loop is added as the outer loop in such a way the unknown controller parameters are changed with environment, according to our constructed parameter adjustment law. Furthermore Lyapunov's stability theory is also used to derive parameter adjustment law such that stability can be guaranteed for the whole adaptive system. Such an adaptive direct data driven control can not only design controller without the model of plant, but also adjust unknown controller parameters adaptively through one constructed parameter adjustment mechanism. Finally two simulation examples confirm our theoretical results.
引用
收藏
页码:783 / 798
页数:16
相关论文
共 18 条
[1]   Iterative minimization of H2 control performance criteria [J].
Bazanella, Alexandre S. ;
Gevers, Michel ;
Miskovic, Ljubisa ;
Anderson, Brian D. O. .
AUTOMATICA, 2008, 44 (10) :2549-2559
[2]   Bounded error identification of systems with time-varying parameters [J].
Bravo, J. M. ;
Alamo, T. ;
Camacho, E. F. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) :1144-1150
[3]   A General Framework for Predictors Based on Bounding Techniques and Local Approximation [J].
Bravo, J. M. ;
Alamo, T. ;
Vasallo, M. ;
Gegundez, M. E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) :3430-3435
[4]   Slide Window Bounded-Error Time-Varying Systems Identification [J].
Bravo, J. M. ;
Suarez, A. ;
Vasallo, M. ;
Alamo, T. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (08) :2282-2287
[5]   Direct nonlinear control design: The virtual reference feedback tuning (VRFT) approach [J].
Campi, MC ;
Savaresi, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (01) :14-27
[6]   An application of the virtual reference feedback tuning method to a benchmark problem [J].
Campi, MC ;
Lecchini, A ;
Savaresi, SM .
EUROPEAN JOURNAL OF CONTROL, 2003, 9 (01) :66-76
[7]   Virtual reference feedback tuning: a direct method for the design of feedback controllers [J].
Campi, MC ;
Lecchini, A ;
Savaresi, SM .
AUTOMATICA, 2002, 38 (08) :1337-1346
[8]   Finite-Sample System Identification: An Overview and a New Correlation Method [J].
Care, Algo ;
Csaji, Balazs Cs ;
Campi, Marco C. ;
Weyer, Erik .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (01) :61-66
[9]   A Scenario Approach for Non-Convex Control Design [J].
Grammatico, Sergio ;
Zhang, Xiaojing ;
Margellos, Kostas ;
Goulart, Paul ;
Lygeros, John .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (02) :334-345
[10]  
Guardabassi G, 2002, IEEE T AUTOMATIC CON, V45, P954