DETERMINATION OF TIME DEPENDENT DIFFUSION COEFFICIENT IN TIME FRACTIONAL DIFFUSION EQUATIONS BY FRACTIONAL SCALING TRANSFORMATIONS METHOD

被引:0
|
作者
Bayrak, Mine Aylin [1 ]
Demir, Ali [1 ]
机构
[1] Kocaeli Univ, Dept Math, Kocaeli, Turkey
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2021年 / 16卷 / 04期
关键词
Time fractional diffusion equation; fractional scaling transformations method; modified Riemann-Liouville fractional derivative; Inverse problem; PARTIAL-DIFFERENTIAL-EQUATIONS; SERIES;
D O I
10.21915/BIMAS.2021402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study is devoted to investigation of inverse problem of identifying unknown time-dependent diffusion coefficient in time fractional diffusion equation in the sense of the modified Riemann-Liouville fractional derivative, by employing fractional scaling transformations method. By means of this method fractional order derivatives turns into integer order derivatives which allows us to deal with the easier problem. After establishing the solution and unknown coefficient of integer order diffusion problem, by utilizing the inverse transformation, we construct the solution and unknown coefficient of time fractional diffusion problem. Presented examples illustrate that identified unknown coefficient and the solution of the problem are in a high agreement with the exact solution of the corresponding the inverse problem.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [21] Learning primal-dual approach for space-dependent diffusion coefficient identification in fractional diffusion equations
    Srati, M.
    Oulmelk, A.
    Afraites, L.
    Hadri, A.
    Zaky, Mahmoud A.
    Hendy, A. S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [22] ERROR ANALYSIS OF A HIGH ORDER METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Lv, Chunwan
    Xu, Chuanju
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) : A2699 - A2724
  • [23] Improved Meshless Finite Integration Method for Solving Time Fractional Diffusion Equations
    Liu, Pengyuan
    Lei, Min
    Yue, Junhong
    Niu, Ruiping
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)
  • [24] Galerkin finite element method for time-fractional stochastic diffusion equations
    Zou, Guang-an
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) : 4877 - 4898
  • [25] Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain
    D. K. Durdiev
    J. J. Jumaev
    Lobachevskii Journal of Mathematics, 2023, 44 : 548 - 557
  • [26] An inverse coefficient-source problem for a time-fractional diffusion equation
    Settara, Loubna
    Atmania, Rahima
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (03): : 68 - 78
  • [27] Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain
    Durdiev, D. K.
    Jumaev, J. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 548 - 557
  • [28] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23
  • [29] An implicit RBF meshless approach for time fractional diffusion equations
    Q. Liu
    Y. T. Gu
    P. Zhuang
    F. Liu
    Y. F. Nie
    Computational Mechanics, 2011, 48 : 1 - 12
  • [30] A fractional Landweber method for solving backward time-fractional diffusion problem
    Han, Yaozong
    Xiong, Xiangtuan
    Xue, Xuemin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (01) : 81 - 91