Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

被引:20
作者
Levin, E. M. [1 ,2 ]
Fang, X. W. [3 ]
Bud'ko, S. L. [1 ,2 ]
Straszheim, W. E. [4 ]
McCallum, R. W. [1 ,5 ]
Schmidt-Rohr, K. [1 ,3 ]
机构
[1] Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[4] Iowa State Univ, Mat Anal & Res Lab, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
关键词
D O I
10.1103/PhysRevB.77.054418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature C-13 NMR spin-lattice relaxation, T-1,T-C, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagneticlike and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. C-13 NMR T-1,T-C relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of similar to 0.01 emu/g at 300 K. Thus, a reduction of T-1,T-C by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to similar to 30 unpaired electrons per similar to 4.6 nm diameter nanodiamond grain.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds
    Alam, TM
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2004, 85 (2-3) : 310 - 315
  • [2] Origin of magnetic moments in carbon nanofoam
    Arcon, D.
    Jaglicic, Z.
    Zorko, A.
    Rode, A. V.
    Christy, A. G.
    Madsen, N. R.
    Gamaly, E. G.
    Luther-Davies, B.
    [J]. PHYSICAL REVIEW B, 2006, 74 (01)
  • [3] Paramagnetic defects in diamond films synthesized by the hot filament chemical vapour deposition
    Banaszak, A.
    Fabisiak, K.
    Kaczmarski, M.
    Kozanecki, M.
    [J]. CRYSTAL RESEARCH AND TECHNOLOGY, 2006, 41 (06) : 535 - 540
  • [4] Substitutional nitrogen in nanodiamond and bucky-diamond particles
    Barnard, AS
    Sternberg, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (36) : 17107 - 17112
  • [5] Paramagnetic properties of nanodiamond
    Belobrov, PI
    Gordeev, SK
    Petrakovskaya, ÉA
    Falaleev, OV
    [J]. DOKLADY PHYSICS, 2001, 46 (07) : 459 - 462
  • [6] Chikazumi S., 1997, PHYS FERROMAGNETISM
  • [7] Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite
    Coey, JMD
    Venkatesan, M
    Fitzgerald, CB
    Douvalis, AP
    Sanders, IS
    [J]. NATURE, 2002, 420 (6912) : 156 - 159
  • [8] Descola P, 1996, COORDIN CHEM REV, V1, P1
  • [9] Dolmatov VY., 2001, RUSS CHEM REV, V70, P607, DOI [10.1070/RC2001v070n07ABEH000665, DOI 10.1070/RC2001V070N07ABEH000665]
  • [10] Induced magnetic ordering by proton irradiation in graphite -: art. no. 227201
    Esquinazi, P
    Spemann, D
    Höhne, R
    Setzer, A
    Han, KH
    Butz, T
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (22)