Thermal error analysis of tauren EDM machine tool based on FCM fuzzy clustering and RBF neural network

被引:4
作者
Liu, Jianyong [1 ]
Cai, Yanhua [2 ]
Zhang, Qinjian [3 ]
Zhang, Haifeng [4 ]
He, Hu [2 ]
Gao, Xiaodong [5 ]
Ding, Liantong [2 ]
机构
[1] Beijing Inst Petrochem Technol, Sch Mech Engn, Betjing, Peoples R China
[2] Beijing Inst Electromachining, Beijing, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China
[4] North China Univ Technol, Beijing, Peoples R China
[5] Beijing Univ Technol, Beijing, Peoples R China
关键词
The tauren EDM machine tool; adaptive fuzzy clustering algorithm; RBF neural network model; thermal errors; DISCHARGE; COMPENSATION; MECHANISM;
D O I
10.3233/JIFS-202241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method that combines temperature field detection, adaptive FCM (Fuzzy c-means) clustering algorithm and RBF (Radial basis function network) neural network model is proposed. This method is used to analyze the thermal error of the spindle reference point of the tauren EDM (Electro-discharge machining) machine tool. The thermal imager is used to obtain the temperature field distribution of the machine tool while the machine tool simulates actual operating conditions. Based on this, the arrangement of temperature measurement points is determined, and the temperature data of the corresponding measurement points are got by temperature sensors. In actual engineering, too many temperature measurement points can cause problems such as too high cost, too much wiring. And normal processing can be affected. In order to establish that the thermal error prediction model of the machine tool spindle reference point can meet the actual engineering needs, the adaptive FCM clustering algorithm is used to optimize the temperature measurement points. While collecting the temperatures of the optimized temperature measurement points, the displacement sensors are used to detect the thermal deformation data in X, Y, Z directions of the spindle reference position. Based on the test data, the RBF neural network thermal errors prediction model of the machine tool spindle reference point is established. Then, the test results are used to verify the accuracy of the thermal errors analysis model. The research method in this paper provides a system solution for thermal error analysis of the tauren EDM machine tool. And this builds a foundation for real-time compensation of the machine tool's thermal errors.
引用
收藏
页码:6003 / 6014
页数:12
相关论文
共 23 条
[1]   Optimum electrode path generation for EDM manufacturing of aerospace components [J].
Ayesta, I. ;
Izquierdo, B. ;
Sanchez, J. A. ;
Ramos, J. M. ;
Plaza, S. ;
Pombo, I. ;
Ortega, N. .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2016, 37 :273-281
[2]   Materials used for sinking EDM electrodes: a review [J].
Czelusniak, Tiago ;
Higa, Camila Fernandes ;
Torres, Ricardo Diego ;
Henning Laurindo, Carlos Augusto ;
de Paiva, Jose Mario Fernandes, Jr. ;
Lohrengel, Armin ;
Amorim, Fred Lacerda .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (01)
[3]  
Fuping Li, 2015, Vibroengineering Procedia. International Conference "Vibroengineering - 2015", Nanjing, P9
[4]  
[高卫国 Gao Weiguo], 2019, [工程设计学报, Chinese Journal of Engineering Design], V26, P29
[5]  
Haixin H., 2016, SYSTEM ENG THEORY PR, V36, P219
[6]   Electrode design using revolving entity extraction for high-efficiency electric discharge machining of integral shrouded blisk [J].
Jia, Yuchao ;
Chi, Guanxin ;
Shen, Yang ;
Zhang, Kun ;
Wang, Zhenlong ;
Wang, Yukui .
CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (06) :178-187
[7]  
Juan H., 2015, MACHINE TOOL HYDRAUL, V2015, P56
[8]   A Review of Thermal Error Modeling Methods for Machine Tools [J].
Li, Yang ;
Yu, Maolin ;
Bai, Yinming ;
Hou, Zhaoyang ;
Wu, Wenwu .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[9]   The thermal error optimization models for CNC machine tools [J].
Liang Ruijun ;
Ye Wenhua ;
Zhang, Haiyan H. ;
Yang Qifan .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 63 (9-12) :1167-1176
[10]   Thermal Error Modeling for Machine Tools: Mechanistic Analysis and Solution for the Pseudocorrelation of Temperature-Sensitive Points [J].
Liu, Hui ;
Miao, Enming ;
Zhang, Liyin ;
Li, Long ;
Hou, Yinlong ;
Tang, Dafeng .
IEEE ACCESS, 2020, 8 :63497-63513