BushNet: Effective semantic segmentation of bush in large-scale point clouds

被引:19
|
作者
Wei, Hejun [1 ]
Xu, Enyong [2 ,3 ]
Zhang, Jinlai [1 ]
Meng, Yanmei [1 ]
Wei, Jin [1 ]
Dong, Zhen [1 ]
Li, Zhengqiang [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Naning 530004, Guangxi, Peoples R China
[2] Dongfeng Liuzhou Motor Co Ltd, Liuzhou 545005, Guangxi, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
关键词
Deep learning; 3D computer vision; Point cloud; TREE CLASSIFICATION; NEURAL-NETWORKS; LIDAR;
D O I
10.1016/j.compag.2021.106653
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Effective and robust semantic segmentation of bush is the fundamental problem of agroforestry environment understanding. However, the point cloud data of most large-scale agroforestry scenes is extremely large, and it is difficult to perform semantic segmentation on them. In order to realize the effective semantic segmentation of bush point cloud in large-scale agroforestry environment, this paper proposes BushNet, a novel point cloud segmentation network consists of three key components. Firstly, we propose the minimum probability random sampling module which can quickly and randomly sample a huge point cloud while avoiding the problem of random sampling easily causing re-sampling, reducing the consumption of computing resources and improving the convergence speed. Secondly, we propose the local multi-dimensional feature fusion module which makes the network more sensitive to bush point cloud features, thereby showing better bush segmentation performance. Thirdly, we propose the multi-channel attention module to achieve more accurate attention distribution and improved training efficiency. Experiments demonstrate that our approach significantly improves segmentation performance on multiple large-scale agroforestry point cloud data sets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [2] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [3] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [4] LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds
    Feng, Guoqiang
    Li, Weilong
    Zhao, Xiaolin
    Yang, Xuemeng
    Kong, Xin
    Huang, TianXin
    Cui, Jinhao
    IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 107 - 115
  • [5] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] EDGE-CONVOLUTION POINT NET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE POINT CLOUDS
    Contreras, Jhonatan
    Denzler, Joachim
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5236 - 5239
  • [7] Building semantic segmentation from large-scale point clouds via primitive recognition
    Romanengo, Chiara
    Cabiddu, Daniela
    Pittaluga, Simone
    Mortara, Michela
    GRAPHICAL MODELS, 2025, 136
  • [8] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Lei Wang
    Jiaji Wu
    Xunyu Liu
    Xiaoliang Ma
    Jun Cheng
    Complex & Intelligent Systems, 2022, 8 : 3833 - 3845
  • [9] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Wang, Lei
    Wu, Jiaji
    Liu, Xunyu
    Ma, Xiaoliang
    Cheng, Jun
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 3833 - 3845
  • [10] Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning
    Ai Da
    Zhang Xiaoyang
    Xu Ce
    Qin Siyu
    Yuan Hui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)