机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAUniv Autonoma Madrid, Dept Matemat, Inst Ciencias Matemat CSIC UAM UCM UC3M, E-28049 Madrid, Spain
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源:
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX
|
2011年
/
78卷
基金:
美国国家科学基金会;
关键词:
FINITE-ELEMENT METHODS;
ELLIPTIC PROBLEMS;
D O I:
10.1007/978-3-642-11304-8_38
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
We introduce a uniformly convergent iterative method for the systems arising from non-symmetric IIPG linear approximations of second order elliptic problems. The method can be viewed as a block Gauss-Seidel method in which the blocks correspond to restrictions of the IIPG method to suitably constructed subspaces. Numerical tests are included, showing the uniform convergence of the iterative method in an energy norm.
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, Susanne C.
Park, Eun-Hee
论文数: 0引用数: 0
h-index: 0
机构:
Kangwon Natl Univ, Sch Gen Studies, Samcheok 25913, Gangwon, South KoreaLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Park, Eun-Hee
Sung, Li-Yeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA