Identities involving skew Lie product and a pair of generalized derivations in prime rings with involution

被引:0
作者
Bhushan, B. [1 ]
Sandhu, G. S. [2 ]
Kumar, D. [1 ]
机构
[1] Punjabi Univ, Dept Math, Patiala 147002, Punjab, India
[2] Patel Mem Natl Coll, Dept Math, Rajpura 140401, Punjab, India
来源
ARMENIAN JOURNAL OF MATHEMATICS | 2021年 / 13卷 / 09期
关键词
Generalized derivations; involution; prime ring; COMMUTATIVITY; MAPPINGS;
D O I
10.52737/18291163-2021.13.9-1-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider skew Lie product on an involutive ring and study several algebraic identities for it, which include generalized derivations of the ring. The results give information about the commutativity of the ring and a description of the generalized derivations.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 20 条
[1]   A NOTE ON SKEW LIE PRODUCT OF PRIME RING WITH INVOLUTION [J].
Abbasi, Adnan ;
Mozumder, Muzibur Rahman ;
Dar, Nadeem Ahmad .
MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) :3-18
[2]  
Alahmadi A, 2017, COMMUN MATH APPL, V8, P87
[3]   Herstein's theorem for generalized derivations in rings with involution [J].
Ali, Shakir ;
Khan, Abdul Nadim ;
Dar, Nadeem Ahmad .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (06) :1029-1034
[4]   On derivations and commutativity of prime rings with involution [J].
Ali, Shakir ;
Dar, Nadeem Ahmed ;
Asci, Mustafa .
GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (01) :9-14
[5]   ON STRONG COMMUTATIVITY PRESERVING LIKE MAPS IN RINGS WITH INVOLUTION [J].
Ali, Shakir ;
Dar, Nadeem Ahmad ;
Khan, Abdul Nadim .
MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) :17-24
[6]  
Bell H. E., 2007, MATH J OKAYAMA U, V49, P139
[7]   ON DERIVATIONS AND COMMUTATIVITY IN PRIME-RINGS [J].
BELL, HE ;
DAIF, MN .
ACTA MATHEMATICA HUNGARICA, 1995, 66 (04) :337-343
[8]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[9]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[10]  
Daif M. N., 1998, Int. J. Math. Math. Sci, V21, P471, DOI [10.1155/S0161171298000660, DOI 10.1155/S0161171298000660]