Analysis of Source and Load-side High Impedance Faults Using Stockwell Transform

被引:0
作者
Nozela, Marco A. S. [1 ]
Lopes, Gabriela N. [1 ]
Trondoli, Luiz H. P. C. [1 ]
Vieira, Jose Carlos M. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Carlos, SP, Brazil
来源
2021 WORKSHOP ON COMMUNICATION NETWORKS AND POWER SYSTEMS (WCNPS) | 2021年
基金
巴西圣保罗研究基金会;
关键词
Distribution Systems; High Impedance Faults; Stockwell Transform; TIME-FREQUENCY TRANSFORM;
D O I
10.1109/WCNPS53648.2021.9626340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High Impedance Faults (HIFs) occur due to the contact between an energized conductor and a high impedance surface. Because of the low amplitude fault current value and its random characteristics, there is no fully efficient solution for its detection. The vast majority of existing detection methods study only source side HIFs. To fill this gap, this paper analyzes the load side HIFs by using the current harmonic content, measured at the system substation, applying Stockwell Transform. The HIF is simulated through an impedance model using actual signals. The results reveal that low-frequency harmonics can be identified regardless of the fault location, mainly on the neutral than on the phase current. These conclusions can help researchers develop new methods to identify HIFs regardless of the scenario.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Modelling and detection of live tree-related high impedance fault in distribution systems [J].
Bahador, Nooshin ;
Namdari, Farhad ;
Matinfar, Hamid Reza .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (03) :756-766
[2]   Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier [J].
Biswal, Milan ;
Dash, P. K. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (04) :1071-1083
[3]   Predicting body measures from 2D images using Convolutional Neural Networks [J].
de Souza, Joao W. M. ;
Holanda, Gabriel B. ;
Ivo, Roberto F. ;
Alves, Shara S. A. ;
da Silva, Suane P. P. ;
Nunes, Virginia X. ;
Loureiro, Luiz Lannes ;
Dias-Silva, C. H. ;
Reboucas Filho, Pedro P. .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[4]   High impedance fault detection: A review [J].
Ghaderi, Amin ;
Ginn, Herbert L., III ;
Mohammadpour, Hossein Ali .
ELECTRIC POWER SYSTEMS RESEARCH, 2017, 143 :376-388
[5]  
Gomes DPS, 2017, AUSTR UNIV POWER ENG
[6]  
IEEE, 2018, IEEE DISTRIBUTION TE
[7]   Time-frequency transform-based differential scheme for microgrid protection [J].
Kar, Susmita ;
Samantaray, Subhransu Rajan .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (02) :310-320
[8]  
Lima E. M., 2018, PROC IEEE PES TRANSM, P1, DOI [10.1109/TDC-LA.2018.8511711, DOI 10.1109/TDC-LA.2018.8511711]
[9]   High impedance fault detection based on Stockwell transform and third harmonic current phase angle [J].
Lima, Erica Mangueira ;
Dantas Brito, Nubia Silva ;
de Souza, Benemar Alencar .
ELECTRIC POWER SYSTEMS RESEARCH, 2019, 175
[10]  
Lopes G. N., 2020, IEEE T POWER DELIVER, P1