A posteriori error estimates for control problems governed by nonlinear elliptic equations

被引:42
作者
Liu, WB [1 ]
Yan, NN
机构
[1] Univ Kent, CBS & IMS, Canterbury CT2 7NF, Kent, England
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
nonlinear optimal control; finite element approximation; adaptive finite element methods; a posteriori error analysis;
D O I
10.1016/S0168-9274(03)00054-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a posteriori error estimates for the finite element approximation of a class of nonlinear optimal control problems. We derive a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for the control problems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 27 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
ARADA N, 2000, 393 SFB
[3]   A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS [J].
BARANGER, J ;
ELAMRI, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01) :31-47
[4]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[5]   Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory [J].
Casas, E ;
Tröltzsch, F .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :406-431
[6]  
Duvaut G., 1973, INEQUALITIES MECH PH
[7]   APPROXIMATION OF A CLASS OF OPTIMAL CONTROL PROBLEMS WITH ORDER OF CONVERGENCE ESTIMATES [J].
FALK, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) :28-47
[8]  
GUNZBURGER MD, 1991, RAIRO-MATH MODEL NUM, V25, P711
[9]  
Haslinger J., 1989, FINITE ELEMENT APPRO
[10]   THE AUGMENTED LAGRANGIAN METHOD FOR PARAMETER-ESTIMATION IN ELLIPTIC-SYSTEMS [J].
ITO, K ;
KUNISCH, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (01) :113-136