Mean curvature motion;
level-set approach;
semi-Lagrangian schemes;
consistency;
generalized monotonicity;
convergence;
PARTIAL-DIFFERENTIAL EQUATIONS;
LEVEL SET EQUATIONS;
VISCOSITY SOLUTIONS;
REPRESENTATION;
APPROXIMATION;
D O I:
10.4171/IFB/240
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyse the properties of a semi-Lagrangian scheme for the approximation of the Mean Curvature Motion (MCM). This approximation is obtained by coupling a stochastic method for the approximation of characteristics (to be understood in a generalized sense) with a local interpolation. The main features of the scheme are that it can handle degeneracies, it is explicit and it allows for large time steps. We also propose a modified version of this scheme, for which monotonicity and consistency can be proved. Then convergence to the viscosity solution of the MCM equation follows by an extension of the Barles-Souganidis theorem. The scheme is also compared with similar existing schemes proposed by Crandall and Lions and, more recently, by Kohn and Serfaty. Finally, several numerical test problems in 2D and 3D are presented.
机构:
Univ Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Brandolini, B.
Cicalese, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Cicalese, M.
Nitsch, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Nitsch, C.
Trombetti, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento MAtemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
机构:
Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USAUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan