Mean curvature motion;
level-set approach;
semi-Lagrangian schemes;
consistency;
generalized monotonicity;
convergence;
PARTIAL-DIFFERENTIAL EQUATIONS;
LEVEL SET EQUATIONS;
VISCOSITY SOLUTIONS;
REPRESENTATION;
APPROXIMATION;
D O I:
10.4171/IFB/240
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyse the properties of a semi-Lagrangian scheme for the approximation of the Mean Curvature Motion (MCM). This approximation is obtained by coupling a stochastic method for the approximation of characteristics (to be understood in a generalized sense) with a local interpolation. The main features of the scheme are that it can handle degeneracies, it is explicit and it allows for large time steps. We also propose a modified version of this scheme, for which monotonicity and consistency can be proved. Then convergence to the viscosity solution of the MCM equation follows by an extension of the Barles-Souganidis theorem. The scheme is also compared with similar existing schemes proposed by Crandall and Lions and, more recently, by Kohn and Serfaty. Finally, several numerical test problems in 2D and 3D are presented.
机构:
Normandie Univ, INSA Rouen, Lab Math, INSA,LMI EA 3226,FR CNRS 3335, St Etienne du Rouvray, FranceNormandie Univ, INSA Rouen, Lab Math, INSA,LMI EA 3226,FR CNRS 3335, St Etienne du Rouvray, France
Forcadel, N.
Imbert, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Creteil, CNRS, UMR 7580, 61 Ave Gen Gaulle, F-94010 Creteil, FranceNormandie Univ, INSA Rouen, Lab Math, INSA,LMI EA 3226,FR CNRS 3335, St Etienne du Rouvray, France
Imbert, C.
Monneau, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CERM ENPC, Marne La Vallee, FranceNormandie Univ, INSA Rouen, Lab Math, INSA,LMI EA 3226,FR CNRS 3335, St Etienne du Rouvray, France
机构:
Univ Paris Diderot, UPMC, Lab Jacques Louis Lions, CNRS,Sorbonne Paris Cite,UMR 7598, F-75205 Paris, FranceUniv Paris Diderot, UPMC, Lab Jacques Louis Lions, CNRS,Sorbonne Paris Cite,UMR 7598, F-75205 Paris, France
Achdou, Yves
Falcone, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, ItalyUniv Paris Diderot, UPMC, Lab Jacques Louis Lions, CNRS,Sorbonne Paris Cite,UMR 7598, F-75205 Paris, France