Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nystrom Method

被引:2
作者
Ma, Yanying [1 ]
Huang, Jin [1 ]
Wang, Changqing [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
来源
INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 2 | 2017年 / 455卷
基金
中国国家自然科学基金;
关键词
Nonlinear integral equations; Volterra-Fredholm-Hammerstein; Sinc function; Nystrom method;
D O I
10.1007/978-3-319-38771-0_18
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a numerical method is presented for solving nonlinear Volterra-Fredholm-Hammerstein integral equations. The proposed method takes full advantage of Nystrom method and Sinc quadrature. Nonlinear integral equations is converted into nonlinear algebraic system equations. Error estimation is derived which is shown to has an exponential order of convergence. The accuracy and effectiveness of the proposed method are illustrated by some numerical experiments.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 50 条
[41]   Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations [J].
Benitez, R. ;
Bolos, V. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :754-768
[42]   New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra-Fredholm integral equations [J].
Tomasiello, Stefania ;
Macias-Diaz, Jorge E. ;
Khastan, Alireza ;
Alijani, Zahra .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09) :4865-4878
[43]   VOLTERRA INTEGRAL EQUATIONS WITH HIGHLY OSCILLATORY KERNELS: A NEW NUMERICAL METHOD WITH APPLICATIONS [J].
Fermo, Luisa ;
Van Der Mee, Cornelis .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2021, 54 :333-354
[44]   Superconvergent Nystrom Method Based on Spline Quasi-Interpolants for Nonlinear Urysohn Integral Equations [J].
Remogna, Sara ;
Sbibih, Driss ;
Tahrichi, Mohamed .
MATHEMATICS, 2023, 11 (14)
[45]   Moving least squares and spectral collocation method to approximate the solution of stochastic Volterra-Fredholm integral equations [J].
Mirzaee, Farshid ;
Solhi, Erfan ;
Samadyar, Nasrin .
APPLIED NUMERICAL MATHEMATICS, 2021, 161 :275-285
[46]   Weighted L-p-solutions on unbounded intervals of nonlinear integral equations of the Hammerstein and Urysohn types [J].
Karoui, Abderrazek ;
Jawahdou, Adel ;
Ben Aouicha, Hichem .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2011, 2 (01) :1-22
[47]   Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules [J].
Bazm, S. ;
Babolian, E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1215-1223
[48]   A numerical method for Fredholm integral equations of the second kind by the IMT-type DE rules [J].
Ogata, Hidenori .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (03) :715-729
[49]   Exact solutions for nonlinear integral equations by a modified homotopy perturbation method [J].
Ghorbani, Asghar ;
Saberi-Nadjafi, Jafar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :1032-1039
[50]   Numerical solutions of two-dimensional nonlinear integral equations via Laguerre Wavelet method with convergence analysis [J].
Maleknejad, K. ;
Dehkordi, M. Soleiman .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (01) :83-98