Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nystrom Method

被引:2
作者
Ma, Yanying [1 ]
Huang, Jin [1 ]
Wang, Changqing [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
来源
INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 2 | 2017年 / 455卷
基金
中国国家自然科学基金;
关键词
Nonlinear integral equations; Volterra-Fredholm-Hammerstein; Sinc function; Nystrom method;
D O I
10.1007/978-3-319-38771-0_18
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a numerical method is presented for solving nonlinear Volterra-Fredholm-Hammerstein integral equations. The proposed method takes full advantage of Nystrom method and Sinc quadrature. Nonlinear integral equations is converted into nonlinear algebraic system equations. Error estimation is derived which is shown to has an exponential order of convergence. The accuracy and effectiveness of the proposed method are illustrated by some numerical experiments.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 50 条
[31]   A global method for solving second-kind Volterra-Fredholm integral equations [J].
Fermo, Luisa ;
Mezzanotte, Domenico ;
Occorsio, Donatella .
BIT NUMERICAL MATHEMATICS, 2025, 65 (02)
[32]   Weakly singular linear Volterra integral equations: A Nystrom method in weighted spaces of continuous functions [J].
Fermo, Luisa ;
Occorsio, Donatella .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
[33]   About a numerical method of successive interpolations for functional Hammerstein integral equations [J].
Bica, A. M. ;
Curila, M. ;
Curila, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) :2005-2024
[34]   The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis [J].
Alireza Hosseinian ;
Pouria Assari ;
Mehdi Dehghan .
Computational and Applied Mathematics, 2023, 42
[35]   The numerical solution of nonlinear delay Volterra integral equations using the thin plate spline collocation method with error analysis [J].
Hosseinian, Alireza ;
Assari, Pouria ;
Dehghan, Mehdi .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (02)
[36]   Solution of nonlinear Fredholm integral equations via the Haar wavelet method [J].
Lepik, Uelo ;
Tamme, Enn .
PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES-PHYSICS MATHEMATICS, 2007, 56 (01) :17-27
[37]   New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra–Fredholm integral equations [J].
Stefania Tomasiello ;
Jorge E. Macías-Díaz ;
Alireza Khastan ;
Zahra Alijani .
Neural Computing and Applications, 2019, 31 :4865-4878
[38]   On the numerical solution of linear and nonlinear volterra integral and integro-differential equations [J].
Mohsen, Adel ;
El-Gamel, Mohamed .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) :3330-3337
[39]   Conditions for blow-up of solutions of some nonlinear Volterra integral equations [J].
Malolepszy, Tomasz ;
Okrasinski, Wojciech .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) :744-750
[40]   Blow-up time for solutions to some nonlinear Volterra integral equations [J].
Malolepszy, Tomasz ;
Okrasinski, Wojciech .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) :372-384