Rose solutions with three petals for planar 4-body problems

被引:5
|
作者
Deng ChunHua [1 ,2 ,3 ]
Zhang ShiQing [1 ,2 ]
Zhou Qing [4 ]
机构
[1] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[3] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223001, Peoples R China
[4] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
4-body problems with Newtonian potentials; rose solutions with three petals; winding numbers; variational minimization methods; N-BODY PROBLEMS; ACTION-MINIMIZING ORBITS; PERIODIC-SOLUTIONS; 3-BODY PROBLEM; LAGRANGIAN SOLUTIONS; VARIATIONAL-METHODS; EQUAL MASSES; MINIMIZATION; PROPERTY;
D O I
10.1007/s11425-010-4021-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For planar Newtonian 4-body problems with equal masses, we use variational methods to prove the existence of a non-collision periodic choreography solution such that all bodies move on a rose-type curve with three petals.
引用
收藏
页码:3085 / 3094
页数:10
相关论文
共 50 条