Characterization of JAK1 Pseudokinase Domain in Cytokine Signaling

被引:26
作者
Raivola, Juuli [1 ]
Haikarainen, Teemu [1 ]
Silvennoinen, Olli [1 ,2 ,3 ]
机构
[1] Tampere Univ, Fac Med & Life Sci, Tampere 33014, Finland
[2] Univ Helsinki, Helsinki Inst Life Sci HiLIFE, Inst Biotechnol, FIN-00014 Helsinki, Finland
[3] Fimlab, Fimlab Labs, Tampere 33520, Finland
基金
芬兰科学院;
关键词
JAK; STAT; cytokine; cytokine receptor; cancer; inflammation; STRUCTURAL BASIS; TYROSINE KINASE; ACUTE LEUKEMIAS; PROTEIN-KINASE; IFN-GAMMA; ACTIVATION; RECEPTOR; MECHANISM; ALPHA; TRANSDUCTION;
D O I
10.3390/cancers12010078
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The Janus kinase-signal transducer and activator of transcription protein (JAK-STAT) pathway mediates essential biological functions from immune responses to haematopoiesis. Deregulated JAK-STAT signaling causes myeloproliferative neoplasms, leukaemia, and lymphomas, as well as autoimmune diseases. Thereby JAKs have gained significant relevance as therapeutic targets. However, there is still a clinical need for better JAK inhibitors and novel strategies targeting regions outside the conserved kinase domain have gained interest. In-depth knowledge about the molecular details of JAK activation is required. For example, whether the function and regulation between receptors is conserved remains an open question. We used JAK-deficient cell-lines and structure-based mutagenesis to study the function of JAK1 and its pseudokinase domain (JH2) in cytokine signaling pathways that employ JAK1 with different JAK heterodimerization partner. In interleukin-2 (IL-2)-induced STAT5 activation JAK1 was dominant over JAK3 but in interferon-gamma (IFN gamma) and interferon-alpha (IFN alpha) signaling both JAK1 and heteromeric partner JAK2 or TYK2 were both indispensable for STAT1 activation. Moreover, IL-2 signaling was strictly dependent on both JAK1 JH1 and JH2 but in IFN gamma signaling JAK1 JH2 rather than kinase activity was required for STAT1 activation. To investigate the regulatory function, we focused on two allosteric regions in JAK1 JH2, the ATP-binding pocket and the alpha C-helix. Mutating L633 at the alpha C reduced basal and cytokine induced activation of STAT in both JAK1 wild-type (WT) and constitutively activated mutant backgrounds. Moreover, biochemical characterization and comparison of JH2s let us depict differences in the JH2 ATP-binding and strengthen the hypothesis that de-stabilization of the domain disturbs the regulatory JH1-JH2 interaction. Collectively, our results bring mechanistic understanding about the function of JAK1 in different receptor complexes that likely have relevance for the design of specific JAK modulators.
引用
收藏
页数:20
相关论文
共 51 条
[1]   Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F [J].
Bandaranayake, Rajintha M. ;
Ungureanu, Daniela ;
Shan, Yibing ;
Shaw, David E. ;
Silvennoinen, Olli ;
Hubbard, Stevan R. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (08) :754-759
[2]   Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state [J].
Briscoe, J ;
Rogers, NC ;
Witthuhn, BA ;
Watling, D ;
Harpur, AG ;
Wilks, A ;
Stark, GR ;
Ihle, JN ;
Kerr, IM .
EMBO JOURNAL, 1996, 15 (04) :799-809
[3]   Structural and functional basis for JAK3-deficient severe combined immunodeficiency [J].
Candotti, F ;
Oakes, SA ;
Johnston, JA ;
Giliani, S ;
Schumacher, RF ;
Mella, P ;
Fiorini, M ;
Ugazio, AG ;
Badolato, R ;
Notarangelo, LD ;
Bozzi, F ;
Macchi, P ;
Strina, D ;
Vezzoni, P ;
Blaese, RM ;
OShea, JJ ;
Villa, A .
BLOOD, 1997, 90 (10) :3996-4003
[4]   Structural modeling of JAK1 mutations in T-cell acute lymphoblastic leukemia reveals a second contact site between pseudokinase and kinase domains [J].
Cante-Barrett, Kirsten ;
Uitdehaag, Joost C. M. ;
Meijerink, Jules P. P. .
HAEMATOLOGICA, 2016, 101 (05)
[5]   JAK2 V617F Constitutive Activation Requires JH2 Residue F595: A Pseudokinase Domain Target for Specific Inhibitors [J].
Dusa, Alexandra ;
Mouton, Celine ;
Pecquet, Christian ;
Herman, Murielle ;
Constantinescu, Stefan N. .
PLOS ONE, 2010, 5 (06)
[6]   Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection [J].
Eletto, Davide ;
Burns, Siobhan O. ;
Angulo, Ivan ;
Plagnol, Vincent ;
Gilmour, Kimberly C. ;
Henriquez, Frances ;
Curtis, James ;
Gaspar, Miguel ;
Nowak, Karolin ;
Daza-Cajigal, Vanessa ;
Kumararatne, Dinakantha ;
Doffinger, Rainer ;
Thrasher, Adrian J. ;
Nejentsev, Sergey .
NATURE COMMUNICATIONS, 2016, 7
[7]   The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions [J].
Ferrao, Ryan ;
Lupardus, Patrick J. .
FRONTIERS IN ENDOCRINOLOGY, 2017, 8
[8]   The Structural Basis for Class II Cytokine Receptor Recognition by JAK1 [J].
Ferrao, Ryan ;
Wallweber, Heidi J. A. ;
Ho, Hoangdung ;
Tam, Christine ;
Franke, Yvonne ;
Quinn, John ;
Lupardus, Patrick J. .
STRUCTURE, 2016, 24 (06) :897-905
[9]   Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation [J].
Ferrao, Ryan D. ;
Wallweber, Heidi J. A. ;
Lupardus, Patrick J. .
ELIFE, 2018, 7
[10]   Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia [J].
Flex, Elisabetta ;
Petrangeli, Valentina ;
Stella, Lorenzo ;
Chiaretti, Sabina ;
Hornakova, Tekla ;
Knoops, Laurent ;
Ariola, Cristina ;
Fodale, Valentina ;
Clappier, Emmanuelle ;
Paoloni, Francesca ;
Martinelli, Simone ;
Fragale, Alessandra ;
Sanchez, Massimo ;
Tavolaro, Simona ;
Messina, Monica ;
Cazzaniga, Giovanni ;
Camera, Andrea ;
Pizzolo, Giovanni ;
Tornesello, Assunta ;
Vignetti, Marco ;
Battistini, Angela ;
Cave, Helene ;
Gelb, Bruce D. ;
Renauld, Jean-Christophe ;
Biondi, Andrea ;
Constantinescu, Stefan N. ;
Foa, Robin ;
Tartaglia, Marco .
JOURNAL OF EXPERIMENTAL MEDICINE, 2008, 205 (04) :751-758