Magneto-electronic specific heat of germanene nanoribbons

被引:4
作者
Shyu, Feng-Lin [1 ]
机构
[1] ROC Mil Acad, Dept Phys, Kaohsiung 830, Taiwan
关键词
Germanene nanoribbon; Tight-binding model; Magnetic field; Electronic property; Electronic specific heat; OPTICAL-PROPERTIES; GRAPHENE;
D O I
10.1016/j.physe.2018.10.013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electronic properties of zigzag and armchair germanene nanoribbons (ZGeNR and AGeNR) in magnetic field are calculated by the tight-binding model including the spin-orbit coupling (SOC). The SOC induces spin-split states changing energy dispersion and band-gap. As field strength increases, band-gap increases for ZGeNRs, but decreases for AGeNRs. At zero field, temperature-dependent electronic specific heat strongly depends on nanoribbon's boundary and width. For ZGeNRs, specific heat declines simply proportional to the inverse of width; however, it depends on the dimer-line number for AGeNRs. At low-temperature, width-dependent specific heat of ZGeNRs rapidly drops with increasing field strength, whereas it exhibits an oscillatory behavior for AGeNRs. As temperature increases, such an oscillatory behavior is smeared out or not that is profoundly related to the dimer-line number of AGeNRs. Low-temperature specific heat with varying magnetic field exhibits peak, peak-dip-peak, or smoothly increasing behaviors that strongly reveals geometry dependence of field-modulated electronic properties.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 44 条
  • [1] Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene
    Aufray, Bernard
    Kara, Abdelkader
    Vizzini, Sebastien
    Oughaddou, Hamid
    Leandri, Christel
    Ealet, Benedicte
    Le Lay, Guy
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (18)
  • [2] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [3] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [4] Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
    Cahangirov, S.
    Topsakal, M.
    Akturk, E.
    Sahin, H.
    Ciraci, S.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [5] Rayleigh imaging of graphene and graphene layers
    Casiraghi, C.
    Hartschuh, A.
    Lidorikis, E.
    Qian, H.
    Harutyunyan, H.
    Gokus, T.
    Novoselov, K. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2007, 7 (09) : 2711 - 2717
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Electronic specific heat of nanographite ribbons
    Chiu, CW
    Lin, MF
    Shyu, FL
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 11 (04) : 356 - 361
  • [8] Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
    Davila, M. E.
    Xian, L.
    Cahangirov, S.
    Rubio, A.
    Le Lay, G.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Evidence of graphene-like electronic signature in silicene nanoribbons
    De Padova, Paola
    Quaresima, Claudio
    Ottaviani, Carlo
    Sheverdyaeva, Polina M.
    Moras, Paolo
    Carbone, Carlo
    Topwal, Dinesh
    Olivieri, Bruno
    Kara, Abdelkader
    Oughaddou, Hamid
    Aufray, Bernard
    Le Lay, Guy
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (26)
  • [10] Continuous Germanene Layer on A(111)
    Derivaz, Mickael
    Dentel, Didier
    Stephan, Regis
    Hanf, Marie-Christine
    Mehdaoui, Ahmed
    Sonnet, Philippe
    Pirri, Carmelo
    [J]. NANO LETTERS, 2015, 15 (04) : 2510 - 2516