Adaptive algorithms for blind channel equalization in impulsive noise

被引:9
作者
Abrar, Shafayat [1 ]
Zerguine, Azzedine [2 ,3 ]
Abed-Meraim, Karim [4 ]
机构
[1] Habib Univ, DSSE, Karachi 75290, Pakistan
[2] King Fahd Univ Petro & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petro & Minerals, Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
[4] Univ Orleans, Inst Univ France IUF, PRISME Lab, F-45072 Orleans, France
关键词
Adaptive filter; Blind equalization; Generalized Gaussian distribution; Impulsive noise; Maximal; -invariance; CONSTANT MODULUS ALGORITHM; SUPER-EXPONENTIAL METHODS; FILTERING ALGORITHM; GAUSSIAN-NOISE; ENTROPY; SYSTEMS; CRITERION; DECONVOLUTION; CORRENTROPY; ADAPTATION;
D O I
10.1016/j.sigpro.2022.108626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The unsupervised adaptive mitigation of intersymbol interference in an additive impulsive noise envi-ronment, modeled as generalized Gaussian, is dealt in this work. The theory of statistical invariance, Wijsman's theorem , is used to develop a maximal-invariant test to discriminate equally-likely pulsed sig-nals against impulsive disturbance leading to an admissible cost function for blind equalization. The cost function is optimized to realize two adaptive equalizers capable of not only mitigating intersymbol inter-ference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in an additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizers in terms of robustness and steady convergence. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 116 条
[1]   Impulsive noise cancellation in multicarrier transmission [J].
Abdelkefi, F ;
Duhamel, P ;
Alberge, F .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (01) :94-106
[2]   Adaptive Blind Equalization in Impulsive Noise [J].
Abrar, Shafayat ;
Zerguine, Azzedine ;
Abed-Meraim, Karim .
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, :1415-1419
[3]   Adaptive Minimum Entropy Equalization Algorithm [J].
Abrar, Shafayat ;
Nandi, Asoke K. .
IEEE COMMUNICATIONS LETTERS, 2010, 14 (10) :966-968
[4]   An Adaptive Constant Modulus Blind Equalization Algorithm and Its Stochastic Stability Analysis [J].
Abrar, Shafayat ;
Nandi, Asoke K. .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (01) :55-58
[5]   Asymptotic Performance of Generalized Selection Combining in Generic Noise and Fading [J].
Ahmed, Imtiaz ;
Nasri, Amir ;
Schober, Robert ;
Mallik, Ranjan K. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (04) :916-922
[6]   Robust Adaptation in Impulsive Noise [J].
Al-Sayed, Sara ;
Zoubir, Abdelhak M. ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (11) :2851-2865
[7]   A Restoration Framework for Ultrasonic Tissue Characterization [J].
Alessandrini, Martino ;
Maggio, Simona ;
Poree, Jonathan ;
De Marchi, Luca ;
Speciale, Nicolo ;
Franceschini, Emilie ;
Bernard, Olivier ;
Basset, Olivier .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (11) :2344-2360
[8]  
Algazi V., 1964, BINARY DETECTION WHI
[9]   Newton-like minimum entropy equalization algorithm for APSK systems [J].
Ali, Anum ;
Abrar, Shafayat ;
Zerguine, Azzedine ;
Nandi, Asoke K. .
SIGNAL PROCESSING, 2014, 101 :74-86
[10]  
[Anonymous], 1994, An Introduction to Signal Detection and Estimation