The local Holder exponent for the entropy of real unimodal maps

被引:4
|
作者
Tiozzo, Giulio [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
entropy; unimodal maps; quadratic polynomials; Holder exponent; HAUSDORFF DIMENSION;
D O I
10.1007/s11425-017-9293-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the topological entropy h() of real unimodal maps as a function of the kneading parameter (equivalently, as a function of the external angle in the Mandelbrot set). We prove that this function is locally Holder continuous where h() > 0, and more precisely for any which does not lie in a plateau the local Holder exponent equals exactly, up to a factor log 2, the value of the function at that point. This confirms a conjecture of Isola and Politi (1990), and extends a similar result for the dimension of invariant subsets of the circle.
引用
收藏
页码:2299 / 2310
页数:12
相关论文
共 50 条