Chaotic driven maps: Non-stationary hyperbolic attractor and hyperchaos

被引:5
作者
Barabash, Nikita, V [1 ,2 ]
Belykh, Vladimir N. [1 ,2 ]
机构
[1] Volga State Univ Water Transport, Dept Math, 5A Nesterov Str, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
DYNAMICS; OSCILLATORS;
D O I
10.1140/epjst/e2020-900252-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study simple examples of non-autonomous maps having different changing in time chaotic attractors. We present the definition of non-stationary hyperbolic attractor of the driven maps. We rigorously prove the existence of non-stationary hyperbolic attractor in 2D driven map and introduce a hyperchaotic attractor for autonomous 3D map of master-slave structure. Our analysis is based on the auxiliary systems approach and the construction of invariant cones.
引用
收藏
页码:1071 / 1081
页数:11
相关论文
共 36 条
  • [1] Afraimovich V., 2002, STUDIES ADV MATH, V28, P353
  • [2] STATISTICAL PROPERTIES OF 2-D GENERALIZED HYPERBOLIC ATTRACTORS
    AFRAIMOVICH, VS
    CHERNOV, NI
    SATAEV, EA
    [J]. CHAOS, 1995, 5 (01) : 238 - 252
  • [3] [Anonymous], 1996, WORLD SCI SERIES NON, DOI DOI 10.1142/2252
  • [4] [Anonymous], 2007, HDB CHAOS CONTROL
  • [5] [Anonymous], 1967, USPEKHI MAT NAUK
  • [6] [Anonymous], NONLINEAR WAVE
  • [7] Anosov D. V., 1967, P STEKLOV I MATH, V90, P209
  • [8] Barabash N. V., 2019, Cybernet. Phys, V8, P209, DOI [10.35470/2226-4116-2019-8-4-209-214, DOI 10.35470/2226-4116-2019-8-4-209-214]
  • [9] Multistable randomly switching oscillators: The odds of meeting a ghost
    Belykh, I.
    Belykh, V.
    Jeter, R.
    Hasler, M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10) : 2497 - 2507
  • [10] Blinking model and synchronization in small-world networks with a time-varying coupling
    Belykh, IV
    Belykh, VN
    Hasler, M
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) : 188 - 206