GenNet framework: interpretable deep learning for predicting phenotypes from genetic data

被引:45
作者
van Hilten, Arno [1 ]
Kushner, Steven A. [2 ]
Kayser, Manfred [3 ]
Arfan Ikram, M. [4 ]
Adams, Hieab H. H. [1 ,5 ]
Klaver, Caroline C. W. [4 ,6 ]
Niessen, Wiro J. [1 ,7 ]
Roshchupkin, Gennady V. [1 ,4 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Med Ctr, Rotterdam, Netherlands
[2] Erasmus MC, Dept Psychiat, Med Ctr, Rotterdam, Netherlands
[3] Erasmus MC, Dept Genet Identificat, Med Ctr, Rotterdam, Netherlands
[4] Erasmus MC, Dept Epidemiol, Med Ctr, Rotterdam, Netherlands
[5] Erasmus MC, Dept Clin Genet, Med Ctr, Rotterdam, Netherlands
[6] Erasmus MC, Dept Ophthalmol, Med Ctr, Rotterdam, Netherlands
[7] Delft Univ Technol, Fac Sci Appl, Delft, Netherlands
关键词
GENOME-WIDE ASSOCIATION; SCHIZOPHRENIA; ENCYCLOPEDIA; ENRICHMENT; COLOR; HERC2;
D O I
10.1038/s42003-021-02622-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Applying deep learning in population genomics is challenging because of computational issues and lack of interpretable models. Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants. In this framework, interpretable and memory-efficient neural network architectures are constructed by embedding biologically knowledge from public databases, resulting in neural networks that contain only biologically plausible connections. We applied the framework to seventeen phenotypes and found well-replicated genes such as HERC2 and OCA2 for hair and eye color, and novel genes such as ZNF773 and PCNT for schizophrenia. Additionally, the framework identified ubiquitin mediated proteolysis, endocrine system and viral infectious diseases as most predictive biological pathways for schizophrenia. GenNet is a freely available, end-to-end deep learning framework that allows researchers to develop and use interpretable neural networks to obtain novel insights into the genetic architecture of complex traits and diseases. van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.
引用
收藏
页数:9
相关论文
共 44 条
[21]   Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability [J].
Hysi, Pirro G. ;
Valdes, Ana M. ;
Liu, Fan ;
Furlotte, Nicholas A. ;
Evans, David M. ;
Bataille, Veronique ;
Visconti, Alessia ;
Hemani, Gibran ;
McMahon, George ;
Ring, Susan M. ;
Smith, George Davey ;
Duffy, David L. ;
Zhu, Gu ;
Gordon, Scott D. ;
Medland, Sarah E. ;
Lin, Bochao D. ;
Willemsen, Gonneke ;
Hottenga, Jouke Jan ;
Vuckovic, Dragana ;
Girotto, Giorgia ;
Gandin, Ilaria ;
Sala, Cinzia ;
Concas, Maria Pina ;
Brumat, Marco ;
Gasparini, Paolo ;
Toniolo, Daniela ;
Cocca, Massimiliano ;
Robino, Antonietta ;
Yazar, Seyhan ;
Hewitt, Alex W. ;
Chen, Yan ;
Zeng, Changqing ;
Uitterlinden, Andre G. ;
Ikram, M. Arfan ;
Hamer, Merel A. ;
van Duijn, Cornelia M. ;
Nijsten, Tamar ;
Mackey, David A. ;
Falchi, Mario ;
Boomsma, Dorret I. ;
Martin, Nicholas G. ;
Hinds, David A. ;
Kayser, Manfred ;
Spector, Timothy D. .
NATURE GENETICS, 2018, 50 (05) :652-+
[22]   Objectives, design and main findings until 2020 from the Rotterdam Study [J].
Ikram, M. Arfan ;
Brusselle, Guy ;
Ghanbari, Mohsen ;
Goedegebure, Andre ;
Ikram, M. Kamran ;
Kavousi, Maryam ;
Kieboom, Brenda C. T. ;
Klaver, Caroline C. W. ;
de Knegt, Robert J. ;
Luik, Annemarie I. ;
Nijsten, Tamar E. C. ;
Peeters, Robin P. ;
van Rooij, Frank J. A. ;
Stricker, Bruno H. ;
Uitterlinden, Andre G. ;
Vernooij, Meike W. ;
Voortman, Trudy .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2020, 35 (05) :483-517
[23]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[24]   Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene [J].
Kayser, Manfred ;
Liu, Fan ;
Janssens, A. Cecile J. W. ;
Rivadeneira, Fernando ;
Lao, Oscar ;
van Duijn, Kate ;
Vermeulen, Mark ;
Arp, Pascal ;
Jhamai, Mila M. ;
van IJcken, Wilfred F. J. ;
den Dunnen, Johan T. ;
Heath, Simon ;
Zelenika, Diana ;
Despriet, Dominiek D. G. ;
Klaver, Caroline C. W. ;
Vingerling, Johannes R. ;
De Jong, Paulus T. V. M. ;
Hofman, Albert ;
Aulchenko, Yurii S. ;
Uitterlinden, Andre G. ;
Oostra, Ben A. ;
van Duijn, Cornelia M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (02) :411-423
[25]   INRICH: interval-based enrichment analysis for genome-wide association studies [J].
Lee, Phil H. ;
O'Dushlaine, Colm ;
Thomas, Brett ;
Purcell, Shaun M. .
BIOINFORMATICS, 2012, 28 (13) :1797-1799
[26]   Privacy-Preserving Federated Brain Tumour Segmentation [J].
Li, Wenqi ;
Milletari, Fausto ;
Xu, Daguang ;
Rieke, Nicola ;
Hancox, Jonny ;
Zhu, Wentao ;
Baust, Maximilian ;
Cheng, Yan ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Feng, Andrew .
MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 :133-141
[27]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[28]   Eye color and the prediction of complex phenotypes from genotypes [J].
Liu, Fan ;
van Duijn, Kate ;
Vingerling, Johannes R. ;
Hofman, Albert ;
Uitterlinden, Andre G. ;
Janssens, A. Cecile J. W. ;
Kayser, Manfred .
CURRENT BIOLOGY, 2009, 19 (05) :R192-R193
[29]   The Genotype-Tissue Expression (GTEx) project [J].
Lonsdale, John ;
Thomas, Jeffrey ;
Salvatore, Mike ;
Phillips, Rebecca ;
Lo, Edmund ;
Shad, Saboor ;
Hasz, Richard ;
Walters, Gary ;
Garcia, Fernando ;
Young, Nancy ;
Foster, Barbara ;
Moser, Mike ;
Karasik, Ellen ;
Gillard, Bryan ;
Ramsey, Kimberley ;
Sullivan, Susan ;
Bridge, Jason ;
Magazine, Harold ;
Syron, John ;
Fleming, Johnelle ;
Siminoff, Laura ;
Traino, Heather ;
Mosavel, Maghboeba ;
Barker, Laura ;
Jewell, Scott ;
Rohrer, Dan ;
Maxim, Dan ;
Filkins, Dana ;
Harbach, Philip ;
Cortadillo, Eddie ;
Berghuis, Bree ;
Turner, Lisa ;
Hudson, Eric ;
Feenstra, Kristin ;
Sobin, Leslie ;
Robb, James ;
Branton, Phillip ;
Korzeniewski, Greg ;
Shive, Charles ;
Tabor, David ;
Qi, Liqun ;
Groch, Kevin ;
Nampally, Sreenath ;
Buia, Steve ;
Zimmerman, Angela ;
Smith, Anna ;
Burges, Robin ;
Robinson, Karna ;
Valentino, Kim ;
Bradbury, Deborah .
NATURE GENETICS, 2013, 45 (06) :580-585
[30]  
Ma JZ, 2018, NAT METHODS, V15, P290, DOI [10.1038/NMETH.4627, 10.1038/nmeth.4627]