GenNet framework: interpretable deep learning for predicting phenotypes from genetic data

被引:45
作者
van Hilten, Arno [1 ]
Kushner, Steven A. [2 ]
Kayser, Manfred [3 ]
Arfan Ikram, M. [4 ]
Adams, Hieab H. H. [1 ,5 ]
Klaver, Caroline C. W. [4 ,6 ]
Niessen, Wiro J. [1 ,7 ]
Roshchupkin, Gennady V. [1 ,4 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Med Ctr, Rotterdam, Netherlands
[2] Erasmus MC, Dept Psychiat, Med Ctr, Rotterdam, Netherlands
[3] Erasmus MC, Dept Genet Identificat, Med Ctr, Rotterdam, Netherlands
[4] Erasmus MC, Dept Epidemiol, Med Ctr, Rotterdam, Netherlands
[5] Erasmus MC, Dept Clin Genet, Med Ctr, Rotterdam, Netherlands
[6] Erasmus MC, Dept Ophthalmol, Med Ctr, Rotterdam, Netherlands
[7] Delft Univ Technol, Fac Sci Appl, Delft, Netherlands
关键词
GENOME-WIDE ASSOCIATION; SCHIZOPHRENIA; ENCYCLOPEDIA; ENRICHMENT; COLOR; HERC2;
D O I
10.1038/s42003-021-02622-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Applying deep learning in population genomics is challenging because of computational issues and lack of interpretable models. Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants. In this framework, interpretable and memory-efficient neural network architectures are constructed by embedding biologically knowledge from public databases, resulting in neural networks that contain only biologically plausible connections. We applied the framework to seventeen phenotypes and found well-replicated genes such as HERC2 and OCA2 for hair and eye color, and novel genes such as ZNF773 and PCNT for schizophrenia. Additionally, the framework identified ubiquitin mediated proteolysis, endocrine system and viral infectious diseases as most predictive biological pathways for schizophrenia. GenNet is a freely available, end-to-end deep learning framework that allows researchers to develop and use interpretable neural networks to obtain novel insights into the genetic architecture of complex traits and diseases. van Hilten and colleagues present GenNet, a deep-learning framework for predicting phenotype from genetic data. This framework generates interpretable neural networks that provide insight into the genetic basis of complex traits and diseases.
引用
收藏
页数:9
相关论文
共 44 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements [J].
Amariuta, Tiffany ;
Ishigaki, Kazuyoshi ;
Sugishita, Hiroki ;
Ohta, Tazro ;
Koido, Masaru ;
Dey, Kushal K. ;
Matsuda, Koichi ;
Murakami, Yoshinori ;
Price, Alkes L. ;
Kawakami, Eiryo ;
Terao, Chikashi ;
Raychaudhuri, Soumya .
NATURE GENETICS, 2020, 52 (12) :1346-1354
[3]  
[Anonymous], 2015, Keras: Deep Learning for Humans
[4]   Deep neural network improves the estimation of polygenic risk scores for breast cancer [J].
Badre, Adrien ;
Zhang, Li ;
Muchero, Wellington ;
Reynolds, Justin C. ;
Pan, Chongle .
JOURNAL OF HUMAN GENETICS, 2021, 66 (04) :359-369
[5]   DISC1-binding proteins in neural development, signalling and schizophrenia [J].
Bradshaw, Nicholas J. ;
Porteous, David J. .
NEUROPHARMACOLOGY, 2012, 62 (03) :1230-1241
[6]  
Burcu F., 2017, J ALZHEIMERS DIS, V176, P139
[7]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[8]   Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations [J].
Candille, Sophie I. ;
Absher, Devin M. ;
Beleza, Sandra ;
Bauchet, Marc ;
McEvoy, Brian ;
Garrison, Nanibaa' A. ;
Li, Jun Z. ;
Myers, Richard M. ;
Barsh, Gregory S. ;
Tang, Hua ;
Shriver, Mark D. .
PLOS ONE, 2012, 7 (10)
[9]  
Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkt1102, 10.1093/nar/gkz1031]
[10]   A biologically-informed polygenic score identifies endophenotypes and clinical conditions associated with the insulin receptor function on specific brain regions [J].
Dass, Shantala A. Hari ;
McCracken, Kathryn ;
Pokhvisneva, Irina ;
Chen, Lawrence M. ;
Garg, Elika ;
Nguyen, Thao T. T. ;
Wang, Zihan ;
Barth, Barbara ;
Yaqubi, Moein ;
McEwen, Lisa M. ;
MacIsaac, Julie L. ;
Diorio, Josie ;
Kobor, Michael S. ;
O'Donnell, Kieran J. ;
Meaney, Michael J. ;
Silveira, Patricia P. .
EBIOMEDICINE, 2019, 42 :188-202