Fine-Scale Phase-Based Ranging Through Walls and Obstructions Using Tunneling RFID Tags

被引:4
作者
Qi, Cheng [1 ]
Amato, Francesco [2 ]
Kihei, Billy [3 ]
Durgin, Gregory D. [1 ]
机构
[1] Georgia Inst Technol, Dept Elect & Comp Engn, Propagat Grp, Atlanta, GA 30332 USA
[2] ITIS Galileo Galilei, Dept Informat, I-00133 Rome, Italy
[3] Kennesaw State Univ, Dept Elect & Comp Engn, Intelligent Mobile Device Lab, Marietta, GA 30060 USA
来源
IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION | 2021年 / 5卷 / 04期
关键词
Tunneling; Location awareness; RFID tags; Backscatter; Diffraction; Receiving antennas; Measurement uncertainty; RFID; RFID positioning; fine-scale localization; tunneling tag; Internet-of-Things; LONG-RANGE; REFLECTION AMPLIFIER; LOCALIZATION; TRACKING; RADIO;
D O I
10.1109/JRFID.2021.3096221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tunneling tags have already shown their long-range capability for communications and localization in line-of-sight (LoS) with a reader operating in the 5.8 GHz band. In this paper, a received signal phase-based positioning method is investigated using semi-passive and tunneling radio frequency identification (RFID) tags in various non-line-of-sight (NLoS) environments. Experimental results show that a tunneling tag achieves gains above 10.2 dB and 19.6 dB when communicating through a cinder block and a plaster wall, respectively. When using the tunneling tag, with proper calibration, an average distance estimation accuracy of 1.33% and 2.37% is achieved in a hallway and classroom environment with clear LoS. An average estimation error of 1.03% and 2.12% is observed in through-obstruction and through-wall NLOS conditions, respectively.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 33 条
[11]   Harmonic Reflection Amplifier for Widespread Backscatter Internet-of-Things [J].
Gumber, Karan ;
Dejous, Corinne ;
Hemour, Simon .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (01) :774-785
[12]  
Gumber K, 2020, IEEE MTT S INT MICR, P603, DOI 10.1109/IMS30576.2020.9223877
[13]  
Hillyard Peter, 2017, 2017 IEEE International Conference on RFID (RFID), P174, DOI 10.1109/RFID.2017.7945605
[14]  
Kimionis J., 2014, IEEE T MICROW THEORY, P1, DOI DOI 10.1109/MWSYM.2014.6848653
[15]   Improved MDS-based Localization with Non-line-of-sight RF Links [J].
Koledoye, Moses A. ;
Facchinetti, Tullio ;
Almeida, Luis .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 98 (01) :227-237
[16]  
Koledoye MA, 2018, IEEE INT CONF AUTON, P148, DOI 10.1109/ICARSC.2018.8374175
[17]  
Lazaro A., 2013, IEEE ANTENNAS WIRELE, V12, P520
[18]   Through-Wall Detection of Human Being's Movement by UWB Radar [J].
Li, Jing ;
Zeng, Zhaofa ;
Sun, Jiguang ;
Liu, Fengshan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) :1079-1083
[19]   Iterative Phase Reconstruction and Weighted Localization Algorithm for Indoor RFID-Based Localization in NLOS Environment [J].
Ma, Yongtao ;
Zhou, Liuji ;
Liu, Kaihua ;
Wang, Jinlong .
IEEE SENSORS JOURNAL, 2014, 14 (02) :597-611
[20]   LANDMARC: Indoor location sensing using active RFID [J].
Ni, LM ;
Liu, YH ;
Lau, YC ;
Patil, AP .
PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM 2003), 2003, :407-415