Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets

被引:29
|
作者
Schmitt, AJ [1 ]
Velikovich, AL
Gardner, JH
Pawley, C
Obenschain, SP
Aglitskiy, Y
Chan, Y
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] USN, Res Lab, Div Plasma Phys, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
[3] Sci Applicat Int Corp, Mclean, VA 22102 USA
关键词
D O I
10.1063/1.1360709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simple hydrodynamic models for describing the Richtmyer-Meshkov (RM) growth and the Rayleigh-Taylor (RT) instability are tested by simulation. The RM sharp boundary model predictions are compared with numerical simulations of targets with surface perturbations or stationary intensity perturbations. Agreement is found in the overall trends, but the specific behavior can be significantly different. RM growth of imprint from optically smoothed lasers is also simulated and quantified. The results are used to calculate surface perturbations, growth factors, and laser imprint efficiencies. These in turn are used with standard RT growth formulas to predict perturbation growth in multimode simulations of compression and acceleration of planar and spherical targets. The largest differences between prediction and theory occur during ramp-up of the laser intensity, where RT formulas predict more growth than seen in the simulations. (C) 2001 American Institute of Physics.
引用
收藏
页码:2287 / 2295
页数:9
相关论文
共 50 条
  • [41] Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang Ⅲ prototype
    VTTikhonchuk
    TGong
    NJourdain
    ORenner
    FPCondamine
    KQPan
    WNazarov
    LHudec
    JLimpouch
    RLiska
    MKrs
    FWang
    DYang
    SWLi
    ZCLi
    ZYGuan
    YGLiu
    TXu
    XSPeng
    XMLiu
    YLLi
    JLi
    TMSong
    JMYang
    SEJiang
    BHZhang
    WYHuo
    GRen
    YHChen
    WZheng
    YKDing
    KLan
    SWeber
    Matter and Radiation at Extremes, 2021, 6 (02) : 40 - 52
  • [42] Multibeam laser±plasma interaction at the Gekko Ⅻ laser facility in conditions relevant for direct-drive inertial confinement fusion
    G.Cristoforetti
    P.Koester
    S.Atzeni
    D.Batani
    S.Fujioka
    Y.Hironaka
    S.Hüller
    T.Idesaka
    K.Katagiri
    K.Kawasaki
    R.Kodama
    D.Mancelli
    Ph.Nicolai
    N.Ozaki
    A.Schiavi
    K.Shigemori
    R.Takizawa
    T.Tamagawa
    D.Tanaka
    A.Tentori
    Y.Umeda
    A.Yogo
    L.A.Gizzi
    HighPowerLaserScienceandEngineering, 2023, 11 (02) : 75 - 85
  • [43] Investigation of laser plasma instabilities driven by 527 nm laser pulses relevant for direct drive inertial confinement fusion
    Wasser, F.
    Zaehter, S.
    Rivers, M.
    Atzeni, S.
    Condamine, F. P.
    Cristoforetti, G.
    Fauvel, G.
    Fischer, N.
    Gizzi, L. A.
    Hoffmann, D.
    Koester, P.
    Lastovicka, T.
    Myatt, J. F.
    Singh, R. L.
    Sokol, M.
    Theobald, W.
    Weber, S.
    Ditmire, T.
    Forner, T.
    Roth, M.
    PHYSICS OF PLASMAS, 2024, 31 (02)
  • [44] TRITIUM CONTENT OF A DT PELLET IN INERTIAL CONFINEMENT FUSION
    KAWATA, S
    NAKASHIMA, H
    LASER AND PARTICLE BEAMS, 1992, 10 (03) : 479 - 484
  • [45] Cost modeling for fabrication of direct drive inertial fusion energy targets
    Rickman, WS
    Goodin, DT
    FUSION SCIENCE AND TECHNOLOGY, 2003, 43 (03) : 353 - 358
  • [46] High yields in direct-drive inertial confinement fusion using thin-ice DT liner targets
    Williams, C. A.
    Betti, R.
    Gopalaswamy, V.
    Lees, A.
    PHYSICS OF PLASMAS, 2021, 28 (12)
  • [47] Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion
    Kato, Hiroki
    Yamada, Hideaki
    Ohmagari, Shinya
    Chayahara, Akiyoshi
    Mokuno, Yoshiaki
    Fukuyama, Yuji
    Fujiwara, Neo
    Miyanishi, Kouhei
    Hironaka, Yoichiro
    Shigemori, Keisuke
    DIAMOND AND RELATED MATERIALS, 2018, 86 : 15 - 19
  • [48] The influence of asymmetry on mix in direct-drive inertial confinement fusion experiments
    Christensen, CR
    Wilson, DC
    Barnes, CW
    Grim, GP
    Morgan, GL
    Wilke, MD
    Marshall, FJ
    Glebov, VY
    Stoeckl, C
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2771 - 2777
  • [49] Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype
    Tikhonchuk, V. T.
    Gong, T.
    Jourdain, N.
    Renner, O.
    Condamine, F. P.
    Pan, K. Q.
    Nazarov, W.
    Hudec, L.
    Limpouch, J.
    Liska, R.
    Krus, M.
    Wang, F.
    Yang, D.
    Li, S. W.
    Li, Z. C.
    Guan, Z. Y.
    Liu, Y. G.
    Xu, T.
    Peng, X. S.
    Liu, X. M.
    Li, Y. L.
    Li, J.
    Song, T. M.
    Yang, J. M.
    Jiang, S. E.
    Zhang, B. H.
    Huo, W. Y.
    Ren, G.
    Chen, Y. H.
    Zheng, W.
    Ding, Y. K.
    Lan, K.
    Weber, S.
    MATTER AND RADIATION AT EXTREMES, 2021, 6 (02)
  • [50] Illumination stability for high-repetition-rate laser facilities in direct-drive inertial confinement fusion
    Schiavi, A.
    Atzeni, S.
    Marocchino, A.
    EPL, 2011, 94 (03)