Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets

被引:29
|
作者
Schmitt, AJ [1 ]
Velikovich, AL
Gardner, JH
Pawley, C
Obenschain, SP
Aglitskiy, Y
Chan, Y
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] USN, Res Lab, Div Plasma Phys, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
[3] Sci Applicat Int Corp, Mclean, VA 22102 USA
关键词
D O I
10.1063/1.1360709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simple hydrodynamic models for describing the Richtmyer-Meshkov (RM) growth and the Rayleigh-Taylor (RT) instability are tested by simulation. The RM sharp boundary model predictions are compared with numerical simulations of targets with surface perturbations or stationary intensity perturbations. Agreement is found in the overall trends, but the specific behavior can be significantly different. RM growth of imprint from optically smoothed lasers is also simulated and quantified. The results are used to calculate surface perturbations, growth factors, and laser imprint efficiencies. These in turn are used with standard RT growth formulas to predict perturbation growth in multimode simulations of compression and acceleration of planar and spherical targets. The largest differences between prediction and theory occur during ramp-up of the laser intensity, where RT formulas predict more growth than seen in the simulations. (C) 2001 American Institute of Physics.
引用
收藏
页码:2287 / 2295
页数:9
相关论文
共 50 条
  • [31] Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions
    Mannion, O. M.
    Igumenshchev, I., V
    Anderson, K. S.
    Betti, R.
    Campbell, E. M.
    Cao, D.
    Forrest, C. J.
    Johnson, M. Gatu
    Glebov, V. Yu
    Goncharov, V. N.
    Gopalaswamy, V
    Ivancic, S. T.
    Jacobs-Perkins, D. W.
    Kalb, A.
    Knauer, J. P.
    Kwiatkowski, J.
    Lees, A.
    Marshall, F. J.
    Michalko, M.
    Mohamed, Z. L.
    Patel, D.
    Rinderknecht, H. G.
    Shah, R. C.
    Stoeckl, C.
    Theobald, W.
    Woo, K. M.
    Regan, S. P.
    PHYSICS OF PLASMAS, 2021, 28 (04)
  • [32] High-gain direct-drive inertial confinement fusion for the Laser Megajoule: recent progress
    Canaud, B.
    Garaude, F.
    Ballereau, P.
    Bourgade, J. L.
    Clique, C.
    Dureau, D.
    Houry, M.
    Jaouen, S.
    Jourdren, H.
    Lecler, N.
    Masse, L.
    Masson, A.
    Quach, R.
    Piron, R.
    Riz, D.
    Van der Vliet, J.
    Temporal, M.
    Delettrez, J. A.
    McKenty, P. W.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B601 - B610
  • [33] Optimal laser intensity profiles for a uniform target illumination in direct-drive inertial confinement fusion
    Mauro Temporal
    Benoit Canaud
    Warren J.Garbett
    Rafael Ramis
    HighPowerLaserScienceandEngineering, 2014, 2 (04) : 62 - 67
  • [34] Modeling the solid-to-plasma transition for laser imprinting in direct-drive inertial confinement fusion
    Duchateau, G.
    Hu, S. X.
    Pineau, A.
    Kar, A.
    Chimier, B.
    Casner, A.
    Tikhonchuk, V
    Goncharov, V. N.
    Radha, P. B.
    Campbell, E. M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [35] Inertial confinement fusion targets - Comments
    Miley, G
    FUSION TECHNOLOGY, 1995, 28 (05): : 1769 - 1769
  • [36] CHOICE OF TARGETS FOR INERTIAL CONFINEMENT FUSION
    Nastoyashchiy, Anatoly F.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (03) : 238 - 246
  • [37] Micromachining of inertial confinement fusion targets
    Gobby, PL
    Salzer, LJ
    Day, RD
    Bartos, JJ
    Rivera, G
    Hatch, DJ
    Garcia, FP
    Manzanares, R
    Foreman, LR
    Bush, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 397 (01): : 183 - 188
  • [38] Choice of targets for inertial confinement fusion
    Anatoly F. Nastoyashchiy
    Journal of Russian Laser Research, 2011, 32 : 238 - 246
  • [39] Laser plasma instability in indirect-drive inertial confinement fusion
    Yang Dong
    Li ZhiChao
    Li SanWei
    Hao Liang
    Li Xin
    Guo Liang
    Zou ShiYang
    Jiang XiaoHua
    Peng XiaoShi
    Xu Tao
    Li YuLong
    Zheng ChunYang
    Cai HongBo
    Liu ZhanJun
    Zheng Jian
    Gong Tao
    Wang ZheBin
    Li Hang
    Kuang LongYu
    Li Qi
    Wang Feng
    Liu ShenYe
    Yang JiaMin
    Jiang ShaoEn
    Zhang BaoHan
    Ding YongKun
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (06)
  • [40] First indirect drive inertial confinement fusion campaign at Laser Megajoule
    Liberatore, S.
    Gauthier, P.
    Willien, J. L.
    Masson-Laborde, P. E.
    Philippe, F.
    Poujade, O.
    Alozy, E.
    Botrel, R.
    Boutoux, G.
    Bray, J.
    Caillaud, T.
    Chicanne, C.
    Chollet, C.
    Debayle, A.
    Depierreux, S.
    Duchastenier, W.
    Ferri, M.
    Henry, O.
    Hoch, P.
    Laffite, S.
    Landoas, O.
    Le-Deroff, L.
    Lefebvre, E.
    Legay, G.
    Marmajou, I.
    Meyer, C.
    Molina, K.
    Morice, O.
    Peche, E.
    Prunet, P.
    Riquier, R.
    Rosch, R.
    Tassin, V.
    Vaisseau, X.
    Villette, B.
    PHYSICS OF PLASMAS, 2023, 30 (12)