Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets

被引:29
|
作者
Schmitt, AJ [1 ]
Velikovich, AL
Gardner, JH
Pawley, C
Obenschain, SP
Aglitskiy, Y
Chan, Y
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] USN, Res Lab, Div Plasma Phys, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
[3] Sci Applicat Int Corp, Mclean, VA 22102 USA
关键词
D O I
10.1063/1.1360709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simple hydrodynamic models for describing the Richtmyer-Meshkov (RM) growth and the Rayleigh-Taylor (RT) instability are tested by simulation. The RM sharp boundary model predictions are compared with numerical simulations of targets with surface perturbations or stationary intensity perturbations. Agreement is found in the overall trends, but the specific behavior can be significantly different. RM growth of imprint from optically smoothed lasers is also simulated and quantified. The results are used to calculate surface perturbations, growth factors, and laser imprint efficiencies. These in turn are used with standard RT growth formulas to predict perturbation growth in multimode simulations of compression and acceleration of planar and spherical targets. The largest differences between prediction and theory occur during ramp-up of the laser intensity, where RT formulas predict more growth than seen in the simulations. (C) 2001 American Institute of Physics.
引用
收藏
页码:2287 / 2295
页数:9
相关论文
共 50 条
  • [21] The National Direct-Drive Inertial Confinement Fusion Program
    Regan, S. P.
    Goncharov, V. N.
    Sangster, T. C.
    Campbell, E. M.
    Betti, R.
    Bates, J. W.
    Bauer, K.
    Bernat, T.
    Bhandarkar, S.
    Boehly, T. R.
    Bonino, M. J.
    Bose, A.
    Cao, D.
    Carlson, L.
    Chapman, R.
    Chapman, T.
    Collins, G. W.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Farrell, M.
    Forrest, C. J.
    Follett, R. K.
    Frenje, J. A.
    Froula, D. H.
    Johnson, M. Gatu
    Gibson, C. R.
    Gonzalez, L.
    Goyon, C.
    Glebov, V. Yu
    Gopalaswamy, V.
    Greenwood, A.
    Harding, D. R.
    Hohenberger, M.
    Hu, S. X.
    Huang, H.
    Hund, J.
    Igumenshchev, I. V.
    Jacobs-Perkins, D. W.
    Janezic, R. T.
    Karasik, M.
    Kelly, J. H.
    Kessler, T. J.
    Knauer, J. P.
    Kosc, T. Z.
    Luo, R.
    Loucks, S. J.
    Marozas, J. A.
    NUCLEAR FUSION, 2019, 59 (03)
  • [22] Microphysics studies for direct-drive inertial confinement fusion
    Hu, S. X.
    Goncharov, V. N.
    Radha, P. B.
    Regan, S. P.
    Campbell, E. M.
    NUCLEAR FUSION, 2019, 59 (03)
  • [23] Direct-Drive Inertial Confinement Fusion Implosions on Omega
    S. P. Regan
    T. C. Sangster
    D. D. Meyerhofer
    K. Anderson
    R. Betti
    T. R. Boehly
    T. J. B. Collins
    R. S. Craxton
    J. A. Delettrez
    R. Epstein
    O. V. Gotchev
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    P. A. Jaanimagi
    J. P. Knauer
    S. J. Loucks
    L. D. Lund
    J. A. Marozas
    F. J. Marshall
    R. L. Mccrory
    P. W. Mckenty
    S. F. B. Morse
    P. B. Radha
    W. Seka
    S. Skupsky
    H. Sawada
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. A. Frenje
    C. K. Li
    R. D. Petrasso
    F. H. SÉguin
    Astrophysics and Space Science, 2005, 298 : 227 - 233
  • [24] INERTIAL CONFINEMENT FUSION TARGETS
    NUCKOLLS, JH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (04) : 542 - 542
  • [25] Laser targets compensate for limitations in inertial confinement fusion drivers
    Kilkenny, JD
    Alexander, NB
    Nikroo, A
    Steinman, DA
    Nobile, A
    Bernat, T
    Cook, R
    Letts, S
    Takagi, M
    Harding, D
    LASER AND PARTICLE BEAMS, 2005, 23 (04) : 475 - 482
  • [26] MAGNETIC SUSPENSION OF A PELLET FOR INERTIAL CONFINEMENT FUSION
    YOSHIDA, H
    KATAKAMI, K
    SAKAGAMI, Y
    AZECHI, H
    NAKARAI, H
    NAKAI, S
    LASER AND PARTICLE BEAMS, 1993, 11 (02) : 455 - 459
  • [27] Robust heavy-ion-beam illumination against a direct-drive-pellet displacement in inertial confinement fusion
    Miyazawa, K
    Ogoyski, AI
    Kawata, S
    Someya, T
    Kikuchi, T
    PHYSICS OF PLASMAS, 2005, 12 (12) : 1 - 9
  • [28] Direct drive inertial confinement fusion in a Z-pinch plasma
    Clark, RW
    Davis, J
    Velikovich, A
    Rudakov, L
    Giuliani, JL
    DENSE Z-PINCHES, 2002, 651 : 275 - 278
  • [29] Optimal laser intensity profiles for a uniform target illumination in direct-drive inertial confinement fusion
    Temporal, Mauro
    Canaud, Benoit
    Garbett, Warren J.
    Ramis, Rafael
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2014, 2
  • [30] Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion
    Regan, S. P.
    Epstein, R.
    Goncharov, V. N.
    Igumenshchev, I. V.
    Li, D.
    Radha, P. B.
    Sawada, H.
    Seka, W.
    Boehly, T. R.
    Delettrez, J. A.
    Gotchev, O. V.
    Knauer, J. P.
    Marozas, J. A.
    Marshall, F. J.
    McCrory, R. L.
    McKenty, P. W.
    Meyerhofer, D. D.
    Sangster, T. C.
    Shvarts, D.
    Skupsky, S.
    Smalyuk, V. A.
    Yaakobi, B.
    Mancini, R. C.
    PHYSICS OF PLASMAS, 2007, 14 (05)