Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets

被引:29
|
作者
Schmitt, AJ [1 ]
Velikovich, AL
Gardner, JH
Pawley, C
Obenschain, SP
Aglitskiy, Y
Chan, Y
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] USN, Res Lab, Div Plasma Phys, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA
[3] Sci Applicat Int Corp, Mclean, VA 22102 USA
关键词
D O I
10.1063/1.1360709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simple hydrodynamic models for describing the Richtmyer-Meshkov (RM) growth and the Rayleigh-Taylor (RT) instability are tested by simulation. The RM sharp boundary model predictions are compared with numerical simulations of targets with surface perturbations or stationary intensity perturbations. Agreement is found in the overall trends, but the specific behavior can be significantly different. RM growth of imprint from optically smoothed lasers is also simulated and quantified. The results are used to calculate surface perturbations, growth factors, and laser imprint efficiencies. These in turn are used with standard RT growth formulas to predict perturbation growth in multimode simulations of compression and acceleration of planar and spherical targets. The largest differences between prediction and theory occur during ramp-up of the laser intensity, where RT formulas predict more growth than seen in the simulations. (C) 2001 American Institute of Physics.
引用
收藏
页码:2287 / 2295
页数:9
相关论文
共 50 条
  • [1] Mitigation of Laser Imprinting with Diamond Ablator for Direct-Drive Inertial Confinement Fusion Targets
    Shigemori, K.
    Kato, H.
    Nakai, M.
    Hosogi, R.
    Sakaiya, T.
    Terasaki, H.
    Fujioka, S.
    Sunahara, A.
    Azechi, H.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [2] Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High-Z Dopants
    Hu, S. X.
    Fiksel, G.
    Goncharov, V. N.
    Skupsky, S.
    Meyerhofer, D. D.
    Smalyuk, V. A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)
  • [3] Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion
    Ceurvorst, L.
    Betti, R.
    Casner, A.
    Gopalaswamy, V
    Bose, A.
    Hu, S. X.
    Campbell, E. M.
    Regan, S. P.
    McCoy, C. A.
    Karasik, M.
    Peebles, J.
    Tabak, M.
    Theobald, W.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [4] Laser plasma interaction in direct-drive inertial confinement fusion
    Myatt, J. F.
    Shaw, J.
    Goncharov, V. N.
    Zhang, J.
    Maximov, A. V.
    Short, R. W.
    Follett, R. K.
    Seka, W.
    Edgell, D. H.
    Froula, D. H.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [5] Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets
    Mason, RJ
    Kopp, RA
    Vu, HX
    Wilson, DC
    Goldman, SR
    Watt, RG
    Dunne, M
    Willi, O
    PHYSICS OF PLASMAS, 1998, 5 (01) : 211 - 221
  • [6] Direct-drive inertial confinement fusion: A review
    Craxton, R. S.
    Anderson, K. S.
    Boehly, T. R.
    Goncharov, V. N.
    Harding, D. R.
    Knauer, J. P.
    McCrory, R. L.
    McKenty, P. W.
    Meyerhofer, D. D.
    Myatt, J. F.
    Schmitt, A. J.
    Sethian, J. D.
    Short, R. W.
    Skupsky, S.
    Theobald, W.
    Kruer, W. L.
    Tanaka, K.
    Betti, R.
    Collins, T. J. B.
    Delettrez, J. A.
    Hu, S. X.
    Marozas, J. A.
    Maximov, A. V.
    Michel, D. T.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Solodov, A. A.
    Soures, J. M.
    Stoeckl, C.
    Zuegel, J. D.
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [7] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Froula, D. H.
    Glebov, V. Yu
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Knauer, J. P.
    Loucks, S. J.
    Marozas, J. A.
    Marshall, F. J.
    McKenty, P. W.
    Michel, T.
    Nilson, P. M.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Shmayda, W. T.
    Short, R. W.
    Shvarts, D.
    Skupsky, S.
    Soures, J. M.
    Stoeckl, C.
    Theobald, W.
    Yaakobi, B.
    Frenje, J. A.
    Casey, D. T.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    Padalino, S. J.
    Fletcher, K. A.
    Celliers, P. M.
    Collins, G. W.
    Robey, H. F.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [8] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Jacobs-Perkins, D. W.
    Knauer, J. P.
    Marshall, F. J.
    McKenty, P. W.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Short, R. W.
    Skupsky, S.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [9] LOW-DENSITY POLYSTYRENE FOAM MATERIALS FOR DIRECT-DRIVE LASER INERTIAL CONFINEMENT FUSION-TARGETS
    KONG, FM
    COOK, R
    HAENDLER, B
    HAIR, L
    LETTS, S
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1988, 6 (03): : 1894 - 1895
  • [10] LOW-DENSITY RESORCINOL FORMALDEHYDE AEROGELS FOR DIRECT-DRIVE LASER INERTIAL CONFINEMENT FUSION-TARGETS
    HAIR, LM
    PEKALA, RW
    STONE, RE
    CHEN, C
    BUCKLEY, SR
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04): : 2559 - 2563