Testing wave-function-collapse models using parametric heating of a trapped nanosphere

被引:56
作者
Goldwater, Daniel [1 ]
Paternostro, Mauro [2 ]
Barker, P. F. [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Queens Univ Belfast, Ctr Theoret Atom Mol & Opt Phys, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Stochastic models - Heating - Stochastic systems - Wave functions;
D O I
10.1103/PhysRevA.94.010104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose amechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center of mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilizing a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoherence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the time scale of seconds and that the free parameter lambda(csl) which characterizes the model ought to be testable to values as low as 10(-12) Hz.
引用
收藏
页数:5
相关论文
共 38 条
[1]   Stochastic collapse and decoherence of a non-dissipative forced harmonic oscillator [J].
Adler, SL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12) :2729-2745
[2]   Collapse models with non-white noises [J].
Adler, Stephen L. ;
Bassi, Angelo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (50) :15083-15098
[3]   Lower and upper bounds on CSL parameters from latent image formation and IGM heating [J].
Adler, Stephen L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (12) :2935-2957
[4]   On spontaneous photon emission in collapse models [J].
Adler, Stephen L. ;
Bassi, Angelo ;
Donadi, Sandro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (24)
[5]   Distinguishing decoherence from alternative quantum theories by dynamical decoupling [J].
Arenz, Christian ;
Hillier, Robin ;
Fraas, Martin ;
Burgarth, Daniel .
PHYSICAL REVIEW A, 2015, 92 (02)
[6]  
Arndt M, 2014, NAT PHYS, V10, P271, DOI [10.1038/nphys2863, 10.1038/NPHYS2863]
[7]   Proposal for a Noninterferometric Test of Collapse Models in Optomechanical Systems [J].
Bahrami, M. ;
Paternostro, M. ;
Bassi, A. ;
Ulbricht, H. .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[8]   Cooling optically trapped particles [J].
Barker, P. F. ;
Millen, J. ;
Li, Y. Lia ;
Trivedi, M. ;
Monteiro, T. S. .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IX, 2012, 8458
[9]   Cavity cooling of an optically trapped nanoparticle [J].
Barker, P. F. ;
Shneider, M. N. .
PHYSICAL REVIEW A, 2010, 81 (02)
[10]   Breaking quantum linearity: Constraints from human perception and cosmological implications [J].
Bassi, A. ;
Deckert, D. -A. ;
Ferialdi, L. .
EPL, 2010, 92 (05)