Fast blind equalization using complex-valued MLP

被引:4
|
作者
Pandey, R [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Commun Engn, Kurukshetra, Haryana, India
关键词
blind equalization; complex-valued feedforward neural network; constant modulus algorithm; recursive least square algorithm; stochastic gradient descent algorithm;
D O I
10.1007/s11063-005-1085-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The blind equalizers based on complex valued feedforward neural networks, for linear and nonlinear communication channels, yield better performance as compared to linear equalizers. The learning algorithms are, generally, based on stochastic gradient descent, as they are simple to implement. However, these algorithms show a slow convergence rate. In the blind equalization problem, the unavailability of the desired output signal and the presence of nonlinear activation functions make the application of recursive least squares algorithm difficult. In this letter, a new scheme using recursive least squares algorithm is proposed for blind equalization. The learning of weights of the output layer is obtained by using a modified version of constant modulus algorithm cost function. For the learning of weights of hidden layer neuron space adaptation approach is used. The proposed scheme results in faster convergence of the equalizer.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条