In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells

被引:177
作者
Yang, Chenghao [1 ]
Li, Jiao [1 ]
Lin, Ye [2 ]
Liu, Jiang [1 ]
Chen, Fanglin [2 ]
Liu, Meilin [1 ,3 ]
机构
[1] S China Univ Technol, Guangzhou Higher Educ Mega Ctr, Sch Environm & Energy, New Energy Res Inst, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ S Carolina, Dept Mech Engn, Columbia, SC 29205 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
CoFe alloy; Nanoparticles; Ruddlesden-Popper; Ceramic anode; Hydrocarbon fuel; BIMETALLIC CATALYST; CATHODE MATERIALS; HIGH-PERFORMANCE; METHANE; SOFC; TOLERANCE; OXIDATION; SULFUR; OXYGEN;
D O I
10.1016/j.nanoen.2014.12.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-free solid oxide fuel cell ceramic anode consisting of Ruddlesden-Popper type layered perovskite (Pr0.4Sr0.6)(3)(Fe0.85Nb0.15)(2)O-7 (RP-PSFN) matrix with homogenously dispersed CoFe bi-metallic alloy (CFA) nanoparticles has been fabricated by in situ annealing the porous perovskite Pr0.4Sr0.6 Co0.2Fe0.7Nb0.1O3-delta membrane in H-2 at 900 degrees C. The RP-PCFN-CFA ceramic anode has demonstrated a similar catalytic activity to Ni-based ceramic anode. La0.8Sr0.2Ga0.83Mg0,17O3-delta electrolyte supported SOFC single cell with RP-PSFN-CFA anode generates maximum power outputs of 0.59 and 0.92 W cm(-2) in wet C3H8 (3 vol% H2O) at 800 and 850 degrees C, respectively. Moreover, the single cell shows a stable power output under a constant current load of 0.40 A cm(-2) in wet C3H8 at 800 degrees C, indicating an excellent coking resistance. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:704 / 710
页数:7
相关论文
共 35 条
[1]   A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications [J].
Amow, G. ;
Davidson, I. J. ;
Skinner, S. J. .
SOLID STATE IONICS, 2006, 177 (13-14) :1205-1210
[2]   Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory [J].
An, Wei ;
Gatewood, Daniel ;
Dunlap, Brett ;
Turner, C. Heath .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4724-4728
[3]   A novel strategy for low-temperature synthesis of Ruddlesden-Popper type layered perovskite La3Mn2O7+δ for methane combustion [J].
Du, Xiaorui ;
Zou, Guojun ;
Zhang, Yan ;
Wang, Xiaolai .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (29) :8411-8416
[4]   Composition and porosity graded La2-xNiO4+δ (x ≥ 0) interlayers for SOFC:: Control of the microstructure via a sol-gel process [J].
Fontaine, M. L. ;
Laberty-Robert, C. ;
Ansart, F. ;
Tailhades, P. .
JOURNAL OF POWER SOURCES, 2006, 156 (01) :33-38
[5]   Recent progress in SOFC anodes for direct utilization of hydrocarbons [J].
Gross, M. D. ;
Vohs, J. M. ;
Gorte, R. J. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3071-3077
[6]   Double perovskites as anode materials for solid-oxide fuel cells [J].
Huang, YH ;
Dass, RI ;
Xing, ZL ;
Goodenough, JB .
SCIENCE, 2006, 312 (5771) :254-257
[7]   Materials for Solid Oxide Fuel Cells [J].
Jacobson, Allan J. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :660-674
[8]   A review of wet impregnation - An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells [J].
Jiang, SP .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 418 (1-2) :199-210
[9]   Oxygen vacancy formation and the ion migration mechanism in layered perovskite (Sr,La)3Fe2O7-δ [J].
Kagomiya, Isao ;
Jimbo, Keigo ;
Kakimoto, Ken-ichi ;
Nakayama, Masanobu ;
Masson, Olivier .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (22) :10875-10882
[10]   Fabrication and characterization of all-ceramic solid oxide fuel cells based on composite oxide anode [J].
Kim, Jeonghee ;
Shin, Dongwook ;
Son, Ji-Won ;
Lee, Jong-Ho ;
Kim, Byung-Kook ;
Je, Hae-June ;
Lee, Hae-Weon ;
Yoon, Kyung Joong .
JOURNAL OF POWER SOURCES, 2013, 241 :440-448