A comparison between the surface compression method and an interface reconstruction method for the VOF approach

被引:57
作者
Cifani, P. [1 ]
Michalek, W. R. [2 ]
Priems, G. J. M. [2 ]
Kuerten, J. G. M. [1 ,2 ]
van der Geld, C. W. M. [2 ]
Geurts, B. J. [1 ,2 ]
机构
[1] Univ Twente, Fac EEMCS, Multiscate Modeling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Multiphase flow; VOF; PLIC; Interface compression; OpenFOAM (R); DIRECT-NUMERICAL-SIMULATION; COUPLED LEVEL SET; FLUID METHOD; TRACKING ALGORITHM; TENSION MODELS; VOLUME; ADVECTION; BUBBLES; COMPUTATIONS; EQUATIONS;
D O I
10.1016/j.compfluid.2016.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In direct numerical simulations of multiphase flows, based on the Volume of Fluid (VOF) approach, the advection of the volume fraction field is a crucial point. The choice of the discretisation scheme for the transport of the volume fraction is decisive for an accurate description of surface dynamics. In this paper we assess two numerical methods: a high order discretisation scheme, namely the surface compression scheme, and an interface reconstruction scheme based on a piecewise linear interface calculation (PLIC). We compare accuracy, convergence rate and computational cost of these methods with results from literature. The comparative study includes reference 2D and 3D advection test cases. Moreover, the advection algorithm is tested coupled to an incompressible Navier-Stokes solver and used to simulate a rising bubble in a liquid for different Eatvfis and Reynolds numbers. We establish via the advection tests and through the study of rising bubbles that the PLIC method converges to second order while the compression method fails to converge systematically. The computational overhead of both methods is negligible compared to an incompressible flow solver to which it might be coupled. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 61 条
  • [1] Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method
    Annaland, MV
    Deen, NG
    Kuipers, JAM
    [J]. CHEMICAL ENGINEERING SCIENCE, 2005, 60 (11) : 2999 - 3011
  • [2] [Anonymous], 2003, COMPUTATIONAL FLUID
  • [3] A critical comparison of surface tension models for the volume of fluid method
    Baltussen, M. W.
    Kuipers, J. A. M.
    Deen, N. G.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2014, 109 : 65 - 74
  • [4] Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution
    Berberovic, Edin
    van Hinsberg, Nils P.
    Jakirlic, Suad
    Roisman, Ilia V.
    Tropea, Cameron
    [J]. PHYSICAL REVIEW E, 2009, 79 (03):
  • [5] An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics
    Bonometti, Thomas
    Magnaudet, Jacques
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2007, 33 (02) : 109 - 133
  • [6] A CONTINUUM METHOD FOR MODELING SURFACE-TENSION
    BRACKBILL, JU
    KOTHE, DB
    ZEMACH, C
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) : 335 - 354
  • [7] Partial differential equations of mathematical physics
    Courant, R
    Friedrichs, K
    Lewy, H
    [J]. MATHEMATISCHE ANNALEN, 1928, 100 : 32 - 74
  • [8] Estimating curvature from volume fractions
    Cummins, SJ
    Francois, MM
    Kothe, DB
    [J]. COMPUTERS & STRUCTURES, 2005, 83 (6-7) : 425 - 434
  • [9] A hybrid particle level set method for improved interface capturing
    Enright, D
    Fedkiw, R
    Ferziger, J
    Mitchell, I
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (01) : 83 - 116
  • [10] A direct numerical simulation study of the buoyant rise of bubbles at O(100) Reynolds number -: art. no. 093303
    Esmaeeli, A
    Tryggvason, G
    [J]. PHYSICS OF FLUIDS, 2005, 17 (09) : 1 - 19