A multi-objective interactive dynamic particle swarm optimizer

被引:3
作者
Barba-Gonzalez, Cristobal [1 ]
Nebro, Antonio J. [1 ]
Garcia-Nieto, Jose [1 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, Dept Lenguajes & Ciencias Computac, Bulevar Louis Pasteur 35, E-29071 Malaga, Spain
关键词
Multi-objective optimization; Particle swarm optimization; Interactive decision making; Dynamic optimization problem; Comparative study;
D O I
10.1007/s13748-019-00198-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective optimization deals with problems having two or more conflicting objectives that have to be optimized simultaneously. When the objectives change somehow with time, the problems become dynamic, and if the decision maker indicates preferences at runtime, then the algorithms to solve them become interactive. In this paper, we propose the integration of SMPSO/RP, an interactive multi-objective particle swarm optimizer based on SMPSO, with InDM2, an algorithmic template for dynamic interactive optimization with metaheuristics. The result is SMPSO/RPD, an algorithm that provides the search capabilities of SMPSO, incorporates an interactive preference articulation mechanism based on defining one or more reference points, and is able to deal with dynamic problems. We conduct a qualitative study showing the working of SMPSO/RPD on three benchmark problems, remaining a qualitative analysis as an open line of future research.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2010, HotCloud
[2]   jMetalSP: A framework for dynamic multi-objective big data optimization [J].
Barba-Gonzalez, Cristobal ;
Garcia-Nieto, Jose ;
Nebro, Antonio J. ;
Cordero, Jose A. ;
Durillo, Juan J. ;
Navas-Delgado, Ismael ;
Aldana-Montesa, Jose F. .
APPLIED SOFT COMPUTING, 2018, 69 :737-748
[3]   Metaheuristics in combinatorial optimization: Overview and conceptual comparison [J].
Blum, C ;
Roli, A .
ACM COMPUTING SURVEYS, 2003, 35 (03) :268-308
[4]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[5]  
Coello Coello C, 2007, MULTIOBJECTIVE OPTIM
[6]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[7]  
Deb K, 2006, GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, P635
[8]   jMetal: A Java']Java framework for multi-objective optimization [J].
Durillo, Juan J. ;
Nebro, Antonio J. .
ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) :760-771
[9]   Dynamic multiobjective optimization problems: Test cases, approximations, and applications [J].
Farina, M ;
Deb, K ;
Amato, P .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (05) :425-442
[10]  
Jaszkiewicz A, 2008, LECT NOTES COMPUT SC, V5252, P179, DOI 10.1007/978-3-540-88908-3_7