RUV-III-NB: normalization of single cell RNA-seq data

被引:5
|
作者
Salim, Agus [1 ,2 ,3 ,4 ,5 ]
Molania, Ramyar [2 ]
Wang, Jianan [2 ,6 ]
De Livera, Alysha [1 ,2 ,4 ,5 ,7 ]
Thijssen, Rachel [8 ]
Speed, Terence P. [2 ,3 ]
机构
[1] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Melbourne, Vic 3053, Australia
[2] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[4] Baker Heart & Diabet Inst, Melbourne, Vic 3004, Australia
[5] La Trobe Univ, Dept Math & Stat, Bundoora, Vic 3086, Australia
[6] Univ Melbourne, Dept Med Biol, Melbourne, Vic 3010, Australia
[7] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
[8] Walter & Eliza Hall Inst Med Res, Blood Cells & Blood Canc Div, Parkville, Vic 3052, Australia
基金
英国医学研究理事会;
关键词
UNWANTED VARIATION; SEQUENCING DATA; EXPRESSION;
D O I
10.1093/nar/gkac486
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Normalization of single cell RNA-seq data remains a challenging task. The performance of different methods can vary greatly between datasets when unwanted factors and biology are associated. Most normalization methods also only remove the effects of unwanted variation for the cell embedding but not from gene-level data typically used for differential expression (DE) analysis to identify marker genes. We propose RUV-III-NB, a method that can be used to remove unwanted variation from both the cell embedding and gene-level counts. Using pseudo-replicates, RUV-III-NB explicitly takes into account potential association with biology when removing unwanted variation. The method can be used for both UMI or read counts and returns adjusted counts that can be used for downstream analyses such as clustering, DE and pseudotime analyses. Using published datasets with different technological platforms, kinds of biology and levels of association between biology and unwanted variation, we show that RUV-III-NB manages to remove library size and batch effects, strengthen biological signals, improve DE analyses, and lead to results exhibiting greater concordance with independent datasets of the same kind. The performance of RUV-III-NB is consistent and is not sensitive to the number of factors assumed to contribute to the unwanted variation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [2] scKWARN: Kernel-weighted-average robust normalization for single-cell RNA-seq data
    Hsu, Chih-Yuan
    Chang, Chia-Jung
    Liu, Qi
    Shyr, Yu
    BIOINFORMATICS, 2024, 40 (02)
  • [3] Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq
    Cole, Michael B.
    Risso, Davide
    Wagner, Allon
    DeTomaso, David
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    Yosef, Nir
    CELL SYSTEMS, 2019, 8 (04) : 315 - +
  • [4] Locality Sensitive Imputation for Single Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (08) : 822 - 835
  • [5] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [6] Using neural networks for reducing the dimensions of single-cell RNA-Seq data
    Lin, Chieh
    Jain, Siddhartha
    Kim, Hannah
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2017, 45 (17)
  • [7] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [8] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [9] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    McCarthy, Davis J.
    Campbell, Kieran R.
    Lun, Aaron T. L.
    Wills, Quin F.
    BIOINFORMATICS, 2017, 33 (08) : 1179 - 1186