RUV-III-NB: normalization of single cell RNA-seq data

被引:5
|
作者
Salim, Agus [1 ,2 ,3 ,4 ,5 ]
Molania, Ramyar [2 ]
Wang, Jianan [2 ,6 ]
De Livera, Alysha [1 ,2 ,4 ,5 ,7 ]
Thijssen, Rachel [8 ]
Speed, Terence P. [2 ,3 ]
机构
[1] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Melbourne, Vic 3053, Australia
[2] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[4] Baker Heart & Diabet Inst, Melbourne, Vic 3004, Australia
[5] La Trobe Univ, Dept Math & Stat, Bundoora, Vic 3086, Australia
[6] Univ Melbourne, Dept Med Biol, Melbourne, Vic 3010, Australia
[7] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
[8] Walter & Eliza Hall Inst Med Res, Blood Cells & Blood Canc Div, Parkville, Vic 3052, Australia
基金
英国医学研究理事会;
关键词
UNWANTED VARIATION; SEQUENCING DATA; EXPRESSION;
D O I
10.1093/nar/gkac486
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Normalization of single cell RNA-seq data remains a challenging task. The performance of different methods can vary greatly between datasets when unwanted factors and biology are associated. Most normalization methods also only remove the effects of unwanted variation for the cell embedding but not from gene-level data typically used for differential expression (DE) analysis to identify marker genes. We propose RUV-III-NB, a method that can be used to remove unwanted variation from both the cell embedding and gene-level counts. Using pseudo-replicates, RUV-III-NB explicitly takes into account potential association with biology when removing unwanted variation. The method can be used for both UMI or read counts and returns adjusted counts that can be used for downstream analyses such as clustering, DE and pseudotime analyses. Using published datasets with different technological platforms, kinds of biology and levels of association between biology and unwanted variation, we show that RUV-III-NB manages to remove library size and batch effects, strengthen biological signals, improve DE analyses, and lead to results exhibiting greater concordance with independent datasets of the same kind. The performance of RUV-III-NB is consistent and is not sensitive to the number of factors assumed to contribute to the unwanted variation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [2] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [3] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    Nature Methods, 2017, 14 : 584 - 586
  • [4] Assessment of Single Cell RNA-Seq Normalization Methods
    Ding, Bo
    Zheng, Lina
    Wang, Wei
    G3-GENES GENOMES GENETICS, 2017, 7 (07): : 2039 - 2045
  • [5] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11
  • [6] Resistant Fit Regression Normalization for Single-cell RNA-seq Data
    Kuang, Da
    Kim, Junhyong
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 236 - 240
  • [7] Normalization and correction for batch effects via RUV for RNA-seq data: practical implications for Breast Cancer
    Debit, A.
    Wenric, S.
    Josse, C.
    Bours, V.
    Van Steen, K.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 995 - 995
  • [8] Normalization and noise reduction for single cell RNA-seq experiments
    Ding, Bo
    Zheng, Lina
    Zhu, Yun
    Li, Nan
    Jia, Haiyang
    Ai, Rizi
    Wildberg, Andre
    Wang, Wei
    BIOINFORMATICS, 2015, 31 (13) : 2225 - 2227
  • [9] Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
    Lause, Jan
    Berens, Philipp
    Kobak, Dmitry
    GENOME BIOLOGY, 2021, 22 (01)
  • [10] Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
    Jan Lause
    Philipp Berens
    Dmitry Kobak
    Genome Biology, 22